【題目】閱讀材料:求解一元一次方程,需要根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為x=a的形式;求解二元一次方程組,需要通過消元把它轉(zhuǎn)化為一元一次方程來解;求解三元一次方程組,需要把它轉(zhuǎn)化為二元一次方程組來解;求解一元二次方程,需要把它轉(zhuǎn)化為兩個一元一次方程來解;求解分式方程,需要通過去分母把它轉(zhuǎn)化為整式方程來解,各類方程的解法不盡相同,但是它們都用到一種共同的基本數(shù)學思想﹣轉(zhuǎn)化,即把未知轉(zhuǎn)化為已知來求解.
用“轉(zhuǎn)化“的數(shù)學思想,我們還可以解一些新的方程.
例如,解一元三次方程x3+x2﹣2x=0,通過因式分解把它轉(zhuǎn)化為x(x2+x﹣2)=0,通過解方程x=0和x2+x﹣2=0,可得原方程x3+x2﹣2x=0的解.
再例如,解根號下含有來知數(shù)的方程:=x,通過兩邊同時平方把它轉(zhuǎn)化為2x+3=x2,解得:x1=3,x2=﹣1.因為2x+3≥0,且x≥0,所以x=﹣1不是原方程的根,x=3是原方程的解.
(1)問題:方程x3+x2﹣2x=0的解是x1=0,x2= ,x3= .
(2)拓展:求方程=x﹣1的解;
(3)應(yīng)用:在一個邊長為1的正方形中構(gòu)造一個如圖所示的正方形;在正方形ABCD邊上依次截取AE=BF=CG=DH=,連接AG,BH,CE,DF,得到正方形MNPQ,若小正方形MNPQ(圖中陰影部分)的邊長為,求n的值.
【答案】(1)1,﹣2;(2)詳見解析;(3)n的值為9.
【解析】
(1)利用因式分解法,即可得出結(jié)論;
(2)先方程兩邊平方轉(zhuǎn)化成整式方程,再求一元二次方程的解,最后必須檢驗;
(3)先根據(jù)勾股定理求出AG,進而得出sin∠AGD=,再構(gòu)造出直角三角形,得出sin∠EAW=,進而建立方程,利用(2)的方法解此方程即可得出結(jié)論.
(1)∵x3+x2﹣2x=0,
∴x(x﹣1)(x+2)=0
∴x=0或x﹣1=0或x+2=0,
∴x1=0,x2=1,x3=﹣2,
故答案為1,﹣2;
(2)給方程
=x﹣1的兩邊平方得,3x2﹣3x﹣2=(x﹣1)2,
∴x=或x=﹣1,
∵3x2﹣3x﹣2≥0且x﹣1≥0,
∴x=﹣1不是原方程的解,x=是原方程的解;
(3)如圖,
∵四邊形ABCD是正方形,
∴∠ADC=90°,
CD∥AB,
∴∠AGD=∠GAB,
∵CG∥AE,CG=AE,
∴四邊形AECG是平行四邊形,
∴AG∥EC,點E作EW∥PQ交AQ于W,
∴四邊形PQWE是平行四邊形,
∴EW=PQ=,
∵四邊形MNPQ是正方形,
∴∠PQA=90°,
∴∠AWE=90°,
在Rt△ADG中,AD=1,DG=1﹣,
根據(jù)勾股定理得,AG=,
∴sin∠AGD==,
在Rt△AWD中,AE=,EW=,
∴sin∠EAW=,
∵∠AGD=∠EAW,
∴=,
兩邊平方得,,
∴2n2﹣2n+1=145,
∴n2﹣n﹣72=0,
∴(n﹣9)(n+8)=0,
∴n=9或n=﹣8(由于n>0,因此舍去),
∴n=9,
即:n的值為9.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E是四邊形ABCD的對角線BD上一點,且∠BAC=∠BDC=∠DAE.
①試說明BE·AD=CD·AE;
②根據(jù)圖形特點,猜想可能等于哪兩條線段的比?并證明你的猜想,(只須寫出有線段的一組即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校組織學生參加“安全知識競賽”(滿分為分),測試結(jié)束后,張老師從七年級名學生中隨機地抽取部分學生的成績繪制了條形統(tǒng)計圖,如圖所示.試根據(jù)統(tǒng)計圖提供的信息,回答下列問題:
(1)張老師抽取的這部分學生中,共有 名男生, 名女生;
(2)張老師抽取的這部分學生中,女生成績的眾數(shù)是 ;
(3)若將不低于分的成績定為優(yōu)秀,請估計七年級名學生中成績?yōu)閮?yōu)秀的學生人數(shù)大約是多少.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知代數(shù)式(n≠-2).
(1)①用含n的代數(shù)式表示m;
②若m、n均取整數(shù),求m、n的值.
(2)當n取a、b時,m對應(yīng)的值為c、d. 當-2<b<a時,試比較c、d的大小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果經(jīng)銷商上月份銷售一種新上市的水果,平均售價為10元/千克,月銷售量為1000千克.經(jīng)市場調(diào)查,若將該種水果價格調(diào)低至x元/千克,則本月份銷售量y(千克)與x(元/千克)之間符合一次函數(shù)關(guān)系,并且得到了表中的數(shù)據(jù):
價格x(元/千克) | 7 | 5 |
價格y(千克) | 2000 | 4000 |
(1)求y與x之間的函數(shù)解析式;
(2)已知該種水果上月份的成本價為5元/千克,本月份的成本價為4元/千克,要使本月份銷售該種水果所獲利潤比上月份增加20%,同時又要讓顧客得到實惠,那么該種水果價格每千克應(yīng)調(diào)低至多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,一幢樓房AB背后有一臺階CD,臺階每層高0.2米,且AC=14.5米,NF=0.2米.設(shè)太陽光線與水平地面的夾角為α,當α=56.3°時,測得樓房在地面上的影長AE=10米,現(xiàn)有一只小貓睡在臺階的NF這層上曬太陽.
(1)求樓房的高度約為多少米?
(2)過了一會兒,當α=45°時,問小貓能否還曬到太陽?請說明理由.(參考數(shù)據(jù):sin56.3°≈0.83,cos56.3°≈0.55,tan56.3°≈1.5)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一塊直角三角形的紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,則CD等于( ).
A. 2 cm B. 4 cm C. 3 cm D. 5 cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,雙曲線(x>0)上有一點A(1,5),過點A的直線y=mx+n與x軸交于點C(6,0).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)連接OA、OB,求△AOB的面積;
(3)根據(jù)圖象直接寫出在第一象限內(nèi)反比例函數(shù)值大于一次函數(shù)值時x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com