【題目】如圖1,在平面直角坐標系中,已知點A(0,a),B(0,b)在y軸上,點 C(m,b)是第四象限內一點,且滿足,△ABC的面積是56;AC交x軸于點D,E是y軸負半軸上的一個動點.
(1)求C點坐標;
(2)如圖2,連接DE,若DEAC于D點,EF為∠AED的平分線,交x軸于H點,且∠DFE=90°,求證:FD平分∠ADO;
(3)如圖3,E在y軸負半軸上運動時,連EC,點P為AC延長線上一點,EM平分 ∠AEC,且PM⊥EM于M點,PN⊥x軸于N點,PQ平分∠APN,交x軸于Q點,則E在運動過程中,的大小是否發(fā)生變化,若不變,求出其值;若變化,請說明理由.
【答案】(1)a=8,b=-6, AB=14, BC=8, C(8,-6);(2)見解析;(3)
【解析】
(1)根據(jù)非負數(shù)的性質求出a、b,得到點A、點B的坐標,根據(jù)△ABC的面積是56的面積公式求出CB,得到點C的坐標;(2)根據(jù)三角形內角和定理、“8字形”題、角平分線的定義計算即可;(2)因為EF為∠AED的平分線,∠DFE=90°,DEAC,所以∠AEF=∠DEF=90°-∠FDE=∠ADF,又因為∠AEF=90°-∠OHE=90°-∠DHF=∠ODF
所以∠ADF=∠ODF,可得FD平分∠ADO;(3)設∠AEM=∠CEM=,設∠APQ=∠NPQ=,因為PN∥AE ,由“M形”易得:(∠MPQ+∠NPQ)+∠AEM=∠M=90°, 即∠MPQ=90°-(+),∠CPN+∠CEA=∠ECP=180-∠ECA , 即∠ECA=180-2(+)從而求解.
解:(1)∵
∴a-8=0,b+6=0,
解得a=8,b=-6,
∴A(3,0)、B(0,-4).
∴OA=8,OB=6,AB=14.
∵S△ABC=×BC×AB= ×BC×14=56,
解得: BC=8,
∵C在第四象限,BC⊥y軸,
∴C(8,-6);
(2)∵EF為∠AED的平分線,∠DFE=90°,DEAC
∴∠AEF=∠DEF=90°-∠FDE=∠ADF
∠AEF=90°-∠OHE=90°-∠DHF=∠ODF
∴∠ADF=∠ODF,即FD平分∠ADO;
(3)設∠AEM=∠CEM=,設∠APQ=∠NPQ=,
∵PN∥AE 由“M形”易得:(∠MPQ+∠NPQ)+∠AEM=∠M=90°, 即∠MPQ=90°-(+),∠CPN+∠CEA=∠ECP=180-∠ECA , 即∠ECA=180-2(+)
∴
科目:初中數(shù)學 來源: 題型:
【題目】燃放煙花爆竹是中國春節(jié)的傳統(tǒng)民俗,可注重低碳、環(huán)保、健康的市民讓今年的煙花爆竹遇冷.在江北區(qū)北濱路一煙花爆竹銷售點了解到,某種品牌的煙花2013年除夕每箱進價100元,售價250元,銷售量40箱 .而2014年除夕當天和去年當天相比,該店的銷售量下降了%(為正整數(shù)),每箱售價提高了%,成本增加了50%,其銷售利潤僅為去年當天利潤的50%.則的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司為了擴大經(jīng)營,決定購進6臺機器用于生產某活塞.現(xiàn)有甲、乙兩種機器供選擇,其中每種機器的價格和每臺機器日生產活塞的數(shù)量如下表所示.經(jīng)過預算,本次購買機器所耗資金不能超過34萬元.
甲 | 乙 | |
價格(萬元/臺) | 7 | 5 |
每臺日產量(個) | 100 | 60 |
(1)按該公司要求可以有幾種購買方案?
(2)如果該公司購進的6臺機器的日生產能力不能低于380個,那么為了節(jié)約資金應選擇什么樣的購買方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.
(1)求證:四邊形ACDF是平行四邊形;
(2)當CF平分∠BCD時,寫出BC與CD的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,用長為6m的鋁合金條制成“日”字形窗框,若窗框的寬為xm,窗戶的透光面積為ym2(鋁合金條的寬度不計).
(1)求出y與x的函數(shù)關系式;
(2)如何安排窗框的長和寬,才能使得窗戶的透光面積最大?并求出此時的最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線的圖象與x軸交于A、B兩點,與y軸交于C點,已知點B坐標為(4,0).
(1)求拋物線的解析式;
(2)判斷△ABC的形狀,直接寫出△ABC外接圓的圓心坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果店出售某種水果,已知該水果的進價為6元/千克,若以9元/千克的價格銷售,則每天可售出200千克;若以11元/千克的價格銷售,則每天可售出120千克.通過調查驗證,我發(fā)現(xiàn)每天的銷售量y(千克)與銷售單價x(元)之間存在一次函數(shù)關系.
(1)求y(千克)與x(元)(x>0)的函數(shù)關系式;
(2)當銷售單價為何值時,該水果店銷售這種水果每天獲取的利潤達到280元?
(3)水果店在進貨成本不超過720元時,銷售單價定為多少元可獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩個等腰直角三角形△ABC和△CDE中,∠ACB=∠DCE=90°,AB=13,CD=5,△CDE繞點C在平面內自由旋轉,當A、E、D三點共線時,AD的長是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的方程x2+(m+2)x+2m-1=0.
(1)求證方程有兩個不相等的實數(shù)根.
(2)當m為何值時,方程的兩根互為相反數(shù)?并求出此時方程的解.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com