【題目】如圖,是同-種蔬菜的兩種裁植方法.甲:四珠順次連結成為一個菱形,且.乙:四株連結成一個正方形。其中兩行作物間的距離為行距;一行中相鄰兩株作物的距離為株距:設這兩種蔬菜充分生長后,每株在地面上的影子近似成一個圓面(相鄰兩圓如圖相切),其中陰影部分的面積表示生長后空隙地面積。設株距都為,其它客觀因素都相同.則對于下列說法:

甲的行距比乙的;甲的行距為甲、乙兩種栽植方式,蔬菜形成的影子面積相同;甲的空隙地面積比乙的空隙地面積少.其中正確的個數(shù)為( 。

A.1B.2C.3D.4

【答案】D

【解析】

先根據(jù)圖甲等邊三角形計算甲的行距,判斷正確;根據(jù)圖乙判斷甲的行距,比較判斷出正確;計算圖甲、圖乙四株植物面積,判斷正確,計算圖甲、圖乙陰影面積,相減,判斷出正確,問題得解.

解:圖甲中,連接于點,在菱形中,有,

,

,

中,,

正確;

∵在圖乙中,四邊形為正方形,

∴乙的行距為a,

正確;

∵圖甲中蔬菜形成影子面積為

圖乙中蔬菜形成影子面積為

正確;

∴圖甲陰影面積為

圖乙陰影面積為

,

∴甲的空隙地面積比乙的空隙地面積少

正確.

故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,樓頂有一根天線,為了測量樓的高度,在地面上取成一條直線的三點E、DC,在點C處測得天線頂端A的仰角為60°,從點C走到點D,CD6米,從點D處測得天線下端B的仰角為45°.又知AB、E在一條線上,AB25米,求樓高BE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB = 90DAB的中點,AEDCCEDA

1)求證:四邊形ADCE是菱形;

2)連接DE,若AC =,BC =2,求證:△ADE是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)計算:;

2)尺規(guī)作圖.如圖,已知和線段a,求作,使,.(不寫作法,保留作圖痕跡.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電器商場銷售每臺進價分別為200元、170元的A、B兩種型號的電風扇,下表是該型號電風扇近兩周的銷售情況:

銷售時段

銷售數(shù)量

銷售收入

A種型號

B種型號

第一周

3

5

1800

第二周

4

10

3100

A、B兩種型號的電風扇的銷售單價;

若該商場準備用不多于5400元的金額再采購這兩種型號的電風扇共30臺,假設售價不變,那么商場應采用哪種采購方案,才能使得當銷售完這些風扇后,商場獲利最多?最多可獲利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年疫情期間,為防止疫惰擴散,人們見面的機會少了,但是隨著通訊技術迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.為此,李老師設計了你最喜歡的溝通方式調查問卷(每人必選且只選一種),進行調查.將統(tǒng)計結果繪制了如下兩幅不完整的統(tǒng)計圖,請結合圖中所給的信息解答下列問題:

1)這次參與調查的共有_______人:在扇形統(tǒng)計圖中,表示微信的扇形圓心角的度數(shù)為_______;其它溝通方式所占的百分比為_______;

2)將條形統(tǒng)計圖補充完整;

3)如果我國有13億人在使用手機.請估計最喜歡用微信進行溝通的人數(shù):并:用科學計數(shù)法表示;在全國使用手機的人中隨機抽取一人,用頻率估計概率,求抽取的恰好使用“QQ”的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,小明用一張邊長為的正三角形硬紙板設計一個無蓋的正三棱柱糖果盒,從三個角處分別剪去一個形狀大小相同的四邊形,其一邊長記為,再折成如圖2所示的無蓋糖果盒,它的容積記為

1關于的函數(shù)關系式是__________,自變量的取值范圍是__________

2)為探究的變化規(guī)律,小明類比二次函數(shù)進行了如下探究:

①列表:請你補充表格中的數(shù)據(jù):

0

05

1

15

2

25

3

0

3125

________

3375

________

0625

0

②描點:請你把上表中各組對應值作為點的坐標,在平面直角坐標系中描出相應的點;

③連線:請你用光滑的曲線順次連接各點.

3)利用函數(shù)圖象解決:

①該糖果盒的最大容積是__________;

②若該糖果盒的容積超過,請估計糖果盒的底邊長的取值范圍.(保留一位小數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形中,點上,連接,上一點,

(1)求證:;

(2),,,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平行四邊形ABCD中,點EAD邊上,連接BE、CE,EB平分∠AEC .

(1)如圖1,判斷△BCE的形狀,并說明理由;

(2)如圖2,若∠A=90°,BC=5,AE=1,求線段BE的長.

查看答案和解析>>

同步練習冊答案