閱讀下列材料:
配方法是初中數(shù)學(xué)中經(jīng)常用到的一個(gè)重要方法,學(xué)好配方法對(duì)我們學(xué)習(xí)數(shù)學(xué)有很大的幫助,所謂配方就是將某一個(gè)多項(xiàng)式變形為一個(gè)完全平方式,變形一定要是恒等的,例如解方程x2-4x+4=0,則(x-2)2=0,∴x=2
x2-2x+y2+4y+5=0 求x、y.則有(x2-2x+1)+(y2+4y+4)=0,
∴(x-1)2+(y+2)2=0.解得x=1,y=-2.x2-2x-3=0則有x2-2x+1-1-3=0,
∴(x-1)2=4.解得x=3或x=-1,根據(jù)以上材料解答下列各題:
(1)若a2+4a+4=0.求a的值.
(2)x2-4x+y2+6y+13=0.求(x+y)2011的值.
(3)若a,b,c表示△ABC的三邊,且a2+b2+c2-ac-ab-bc=0,試判斷△ABC的形狀,并說明理由.
考點(diǎn):配方法的應(yīng)用
專題:閱讀型
分析:(1)運(yùn)用完全平方公式將a2+4a+4=0變形為(a+2)2=0,即可求出a的值;
(2)首先將x2-4x+y2+6y+13=0分成兩個(gè)完全平方式的形式,根據(jù)非負(fù)數(shù)的性質(zhì)求出x、y的值,再代入(x+y)2011即可解答;
(3)先將已知等式利用配方法變形,再利用非負(fù)數(shù)的性質(zhì)解題.
解答:解:(1)∵a2+4a+4=0,
∴(a+2)2=0,
∴a+2=0,
∴a=-2;

(2)∵x2-4x+y2+6y+13=0,
∴(x-2)2+(y+3)2=0,
∴x=2,y=-3,
∴(x+y)-2011=(2-3)-2011=-1;

(3)△ABC為等邊三角形.理由如下:
∵a2+b2+c2-ac-ab-bc=0,
∴2a2+2b2+2c2-2ac-2ab-2bc=0,
即a2+b2-2ab+b2+c2-2bc+a2+c2-2ac=0,
∴(a-b)2+(b-c)2+(c-a)2=0,
∴a-b=0,b-c=0,c-a=0,
∴a=b=c,
∴△ABC為等邊三角形.
點(diǎn)評(píng):此題考查了配方法的運(yùn)用,非負(fù)數(shù)的性質(zhì),完全平方公式,等邊三角形的判斷.解題的關(guān)鍵是構(gòu)建完全平方式,根據(jù)非負(fù)數(shù)的性質(zhì)解題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(-
1
2
)5
表示
 
個(gè)-
1
2
相乘,-52=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

將一些數(shù)排成如表所示:
14510
481012
9121514
問:第10行第2列的數(shù)是多少?數(shù)81所在行和所在列是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知一元二次方程x2-4x-3=0的兩根分別為x1,x2,則x1•x2=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB、AC為⊙O的弦,連接CO、BO并延長分別交弦AB、AC于點(diǎn)E、F,∠B=∠C.問:線段CE和線段BF相等嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,淇淇和嘉嘉做數(shù)學(xué)游戲:
根據(jù)圖中所提供的信息,請(qǐng)用整式相關(guān)的知識(shí)解釋為什么淇淇可以猜中結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若x=2是方程x2+ax-8=0的解,則a=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次方程(m-2)x2+3x+m2-4=0有一個(gè)解為0,則m的值為( 。
A、2B、-2C、±2D、0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知a2+b2+4a-2b=-5,則
-
b
a
+
-
a
b
的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案