【題目】小明從家里騎自行車到學(xué)校,每小時騎20km,可早到小時,每小時騎15km就會遲到小時,問他家到學(xué)校的路程是多少km?

【答案】他家到學(xué)校的路程是25km

【解析】

方法一:設(shè)小明他家到學(xué)校的路程為xkm.根據(jù)每小時騎20km所用的時間+=每小時騎15km所用的時間-列出方程,求解即可;

方法二:設(shè)小明到學(xué)校的時間為x小時.根據(jù)路程不變列出方程,并解答.

解:方法一:設(shè)小明他家到學(xué)校的路程為xkm,

依題意得:+=-,

解得x =25

答:他家到學(xué)校的路程是25km;

方法二:設(shè)小明到學(xué)校的時間為x小時,

20x-=15x+),

解得x =1.5

他家到學(xué)校的路程為20×1.5-=25(千米).

答:他家到學(xué)校的路程是25km

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副直角三角板如圖擺放,點(diǎn)C在EF上,AC經(jīng)過點(diǎn)D.已知∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,則∠CDF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)A在第一象限,點(diǎn)B,C的坐標(biāo)為(2,1),(6,1),∠BAC=90°,AB=AC,直線AB交x軸于點(diǎn)P.若△ABC與△A'B'C'關(guān)于點(diǎn)P成中心對稱,則點(diǎn)A'的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,點(diǎn)E是邊BC的中點(diǎn),∠AEF=90°,且EF交正方形外角平分線CF于點(diǎn)F.請你認(rèn)真閱讀下面關(guān)于這個圖的探究片段,完成所提出的問題.

1)探究1:小強(qiáng)看到圖(*)后,很快發(fā)現(xiàn)AE=EF,這需要證明AEEF所在的兩個三角形全等,但ABEECF顯然不全等(一個是直角三角形,一個是鈍角三角形),考慮到點(diǎn)E是邊BC的中點(diǎn),因此可以選取AB的中點(diǎn)M,連接EM后嘗試著去證AEMEFC就行了,隨即小強(qiáng)寫出了如下的證明過程:

證明:如圖1,取AB的中點(diǎn)M,連接EM

∵∠AEF=90°

∴∠FEC+AEB=90°

又∵∠EAM+AEB=90°

∴∠EAM=FEC

∵點(diǎn)E,M分別為正方形的邊BCAB的中點(diǎn)

AM=EC

又可知BME是等腰直角三角形

∴∠AME=135°

又∵CF是正方形外角的平分線

∴∠ECF=135°

∴△AEM≌△EFCASA

AE=EF

2)探究2:小強(qiáng)繼續(xù)探索,如圖2,若把條件點(diǎn)E是邊BC的中點(diǎn)改為點(diǎn)E是邊BC上的任意一點(diǎn),其余條件不變,發(fā)現(xiàn)AE=EF仍然成立,請你證明這一結(jié)論.

3)探究3:小強(qiáng)進(jìn)一步還想試試,如圖3,若把條件點(diǎn)E是邊BC的中點(diǎn)改為點(diǎn)E是邊BC延長線上的一點(diǎn),其余條件仍不變,那么結(jié)論AE=EF是否成立呢?若成立請你完成證明過程給小強(qiáng)看,若不成立請你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC的角平分線CD、BE相交于F,∠A90°,EGBC,且CGEGG,下列結(jié)論:①∠CEG2DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠DFBCGE.其中正確的結(jié)論是( )

A. ②③B. ①②④C. ①③④D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中∠A=30°,EAC邊上的點(diǎn),先將ABE沿著BE翻折,翻折后ABEAB邊交AC于點(diǎn)D,又將BCD沿著BD翻折,C點(diǎn)恰好落在BE上,此時∠CDB=80°,則原三角形的∠B _____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩個形狀、大小完全相同的含有30°、60°的直角三角板如圖①放置,PAPB與直線MN重合,且三角板PAC、三角板PBD均可繞點(diǎn)P逆時針旋轉(zhuǎn).

1)直接寫出DPC的度數(shù).

2)如圖②,在圖①基礎(chǔ)上,若三角板PAC的邊PAPN處開始繞點(diǎn)P逆時針旋轉(zhuǎn),轉(zhuǎn)速為5°/秒,同時三角板PBD的邊PBPM處開始繞點(diǎn)P逆時針旋轉(zhuǎn),轉(zhuǎn)速為1°/秒,(當(dāng)PA轉(zhuǎn)到與PM重合時,兩三角板都停止轉(zhuǎn)動),在旋轉(zhuǎn)過程中,當(dāng)PCPB重合時,求旋轉(zhuǎn)的時間是多少?

3)在(2)的條件下,PC、PB、PD三條射線中,當(dāng)其中一條射線平分另兩條射線的夾角時,請直接寫出旋轉(zhuǎn)的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有若干張如圖1所示的正方形紙片A,B和長方形紙片C

1)小王利用這些紙片拼成了如圖2的一個新正方形,通過用兩種不同的方法計(jì)算新正方形面積,由此,他得到了一個等式:______ ;

2)小王再取其中的若干張紙片(三種紙片都要取到)拼成一個面積為a2+3ab+nb2的長方形,則n可取的正整數(shù)值是______ ,并請你在圖3位置畫出拼成的長方形;

3)根據(jù)拼圖經(jīng)驗(yàn),請將多項(xiàng)式a2+5ab+4b2分解因式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+1經(jīng)過A(﹣1,0),B(1,1)兩點(diǎn).

(1)求該拋物線的解析式;
(2)閱讀理解:
在同一平面直角坐標(biāo)系中,直線l1:y=k1x+b1(k1 , b1為常數(shù),且k1≠0),直線l2:y=k2x+b2(k2 , b2為常數(shù),且k2≠0),若l1⊥l2 , 則k1k2=﹣1.
解決問題:
①若直線y=3x﹣1與直線y=mx+2互相垂直,求m的值;
②拋物線上是否存在點(diǎn)P,使得△PAB是以AB為直角邊的直角三角形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)M是拋物線上一動點(diǎn),且在直線AB的上方(不與A,B重合),求點(diǎn)M到直線AB的距離的最大值.

查看答案和解析>>

同步練習(xí)冊答案