【題目】如圖,在△ABC中,點(diǎn)D是BC的中點(diǎn),點(diǎn)E、F分別在線段AD及其延長線上,且DE=DF.下列條件使四邊形BECF為菱形的是( )
A.BE⊥CE
B.BF∥CE
C.BE=CF
D.AB=AC
【答案】D
【解析】解:條件是AB=AC, 理由是:∵AB=AC,點(diǎn)D是BC的中點(diǎn),
∴EF⊥BC,BD=DC,
∵DE=DF,
∴四邊形BECF是平行四邊形,
∵EF⊥BC,
∴四邊形BECF是菱形,
選項(xiàng)A、B、C的條件都不能推出四邊形BECF是菱形,
即只有選項(xiàng)D正確,選項(xiàng)A、B、C都錯(cuò)誤;
故選D.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解菱形的判定方法的相關(guān)知識(shí),掌握任意一個(gè)四邊形,四邊相等成菱形;四邊形的對(duì)角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對(duì)角線若垂直,順理成章為菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A、B兩個(gè)村莊的坐標(biāo)分別是(2,1)和(6,3),一輛汽車從原點(diǎn)O出發(fā),沿x軸向右行駛.
(1)當(dāng)汽車行駛到點(diǎn)M(___________)時(shí)離A村最近;
(2)當(dāng)汽車行駛到點(diǎn)N(____________)時(shí)離B村最近;
(3)當(dāng)汽車行駛到點(diǎn)P(___________)時(shí)離A、B兩村一樣近.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m, CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2)如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩座建筑物的水平距離BC=30m,從A點(diǎn)測得D點(diǎn)的俯角α為30°,測得C點(diǎn)的俯角β為60°,求這兩座建筑物的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,張老師出示了問題:如圖1,AC,BD是四邊形ABCD的對(duì)角線,若∠ACB=∠ACD=∠ABD=∠ADB=60°,則線段BC,CD,AC三者之間有何等量關(guān)系?
經(jīng)過思考,小明展示了一種正確的思路:如圖2,延長CB到E,使BE=CD,連接AE,證得△ABE≌△ADC,從而容易證明△ACE是等邊三角形,故AC=CE,所以AC=BC+CD.
小亮展示了另一種正確的思路:如圖3,將△ABC繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,使AB與AD重合,從而容易證明△ACF是等邊三角形,故AC=CF,所以AC=BC+CD.
在此基礎(chǔ)上,同學(xué)們作了進(jìn)一步的研究:
(1)小穎提出:如圖4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改為“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它條件不變,那么線段BC,CD,AC三者之間有何等量關(guān)系?針對(duì)小穎提出的問題,請你寫出結(jié)論,并給出證明.
(2)小華提出:如圖5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改為“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它條件不變,那么線段BC,CD,AC三者之間有何等量關(guān)系?針對(duì)小華提出的問題,請你寫出結(jié)論,不用證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直線AB、CE交于O,
(1)寫出∠AOC的對(duì)頂角和鄰補(bǔ)角;
(2)寫出∠COF的鄰補(bǔ)角;
(3)寫出∠BOF的鄰補(bǔ)角;
(4)寫出∠AOE的對(duì)頂角及其所有的鄰補(bǔ)角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠A+∠D=180°,∠1=3∠2,∠2=24°,點(diǎn)P是BC上的一點(diǎn).
(1)請寫出圖中∠1的一對(duì)同位角,一對(duì)內(nèi)錯(cuò)角,一對(duì)同旁內(nèi)角;
(2)求∠EFC與∠E的度數(shù);
(3)若∠BFP=46°,請判斷CE與PF是否平行?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,每個(gè)小正方形邊長都是1.
(1)按要求作圖:
①△ABC關(guān)于x軸對(duì)稱的圖形△A1B1C1;
②將△A1B1C1向右平移7個(gè)單位得到△A2B2C2.
(2)回答下列問題:
①△A2B2C2中頂點(diǎn)B2坐標(biāo)為 .
②若P(a,b)為△ABC邊上一點(diǎn),則按照(1)中①、②作圖,點(diǎn)P對(duì)應(yīng)的點(diǎn)P2的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣4與x軸交于點(diǎn)A(2,0)和點(diǎn)B,與y軸交于點(diǎn)C,頂點(diǎn)為點(diǎn)D,對(duì)稱軸為直線x=﹣1,點(diǎn)E為線段AC的中點(diǎn),點(diǎn)F為x軸上一動(dòng)點(diǎn).
(1)直接寫出點(diǎn)B的坐標(biāo),并求出拋物線的函數(shù)關(guān)系式;
(2)當(dāng)點(diǎn)F的橫坐標(biāo)為﹣3時(shí),線段EF上存在點(diǎn)H,使△CDH的周長最小,請求出點(diǎn)H,使△CDH的周長最小,請求出點(diǎn)H的坐標(biāo);
(3)在y軸左側(cè)的拋物線上是否存在點(diǎn)P,使以P,F(xiàn),C,D為頂點(diǎn)的四邊形是平行四邊形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com