【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)M,N的坐標(biāo)分別為(﹣1,2),(2,1),若拋物線y=ax2﹣x+2(a≠0)與線段MN有兩個(gè)不同的交點(diǎn),則a的取值范圍是(  )

A. a≤﹣1≤a< B. ≤a<

C. a≤a> D. a≤﹣1a≥

【答案】A

【解析】

根據(jù)二次函數(shù)的性質(zhì)分兩種情形討論求解即可;

∵拋物線的解析式為y=ax2-x+2.

觀察圖象可知當(dāng)a<0時(shí),x=-1時(shí),y≤2時(shí),滿足條件,即a+3≤2,即a≤-1;

當(dāng)a>0時(shí),x=2時(shí),y≥1,且拋物線與直線MN有交點(diǎn),滿足條件,

a≥,

∵直線MN的解析式為y=-x+,

消去y得到,3ax2-2x+1=0,

∵△>0,

a<,

≤a<滿足條件,

綜上所述,滿足條件的a的值為a≤-1≤a<,

故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtAEBRtAFC中,∠E=F=90°BE=CFBEAC相交于點(diǎn)M,與CF相交于點(diǎn)DABCF相交于點(diǎn)N,∠EAC=FAB.有下列結(jié)論:①∠B=C;②CD=DN;③CM=BN;④△ACN≌△ABM.其中正確結(jié)論的序號(hào)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:在坐標(biāo)平面內(nèi),等腰直角中,,,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,軸于點(diǎn).

1)求點(diǎn)的坐標(biāo);

2)求點(diǎn)的坐標(biāo);

3)如圖,點(diǎn)軸上,當(dāng)的周長(zhǎng)最小時(shí),求出點(diǎn)的坐標(biāo);

4)在直線上有點(diǎn),在軸上有點(diǎn),求出的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面方法,解答后面的問(wèn)題:

(閱讀理解)我們已經(jīng)學(xué)習(xí)了利用配方法解一元二次方程,其實(shí)配方法還有其他重要應(yīng)用。

例題:已知x可取任意實(shí)數(shù),試求二次三項(xiàng)式的取值范圍。

解:

∵x取任何實(shí)數(shù),總有,∴

因此,無(wú)論x取任何實(shí)數(shù),的值總是不小于-4的實(shí)數(shù)。

特別的,當(dāng)x=3時(shí),有最小值-4

(應(yīng)用1):已知x可取任何實(shí)數(shù),則二次三項(xiàng)式的最值情況是(

A. 有最大值-10 B. 有最小值-10 C. 有最大值-7 D. 有最小值-7

(應(yīng)用2):某品牌服裝進(jìn)貨價(jià)為每件50元,商家在銷(xiāo)售中發(fā)現(xiàn):當(dāng)以每件90元銷(xiāo)售時(shí),平均每天可售出20件,為了擴(kuò)大銷(xiāo)售量,增加盈利,商家決定采取適當(dāng)?shù)慕祪r(jià)措施。

(1)將市場(chǎng)調(diào)查發(fā)現(xiàn):如果每件服裝降價(jià)1元,那么平均每天那就可多售出2件,要想平均每天銷(xiāo)售這種服裝盈利為1200元,我們?cè)O(shè)降價(jià)x元,根據(jù)題意列方程得(

A. B.

C. D.

(2)請(qǐng)利用上面(閱讀理解)提供的方法解決下面問(wèn)題:

這家服裝專(zhuān)柜為了獲得每天的最大盈利,每件服裝需要降價(jià)多少元?每天的最大盈利又是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB=AC,AE=AF,BECF交于點(diǎn)D,則對(duì)于下列結(jié)論:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分線上.其中正確的是( 。

A. B. C. D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為解決部分市民冬季集中取暖問(wèn)題,需鋪設(shè)一條長(zhǎng)4000米的管道,為盡量減少施工對(duì)交通造成的影響,施工時(shí)“…”,設(shè)實(shí)際每天鋪設(shè)管道x米,則可得方程20,根據(jù)此情景,題中用“…”表示的缺失的條件應(yīng)補(bǔ)為( 。

A. 每天比原計(jì)劃多鋪設(shè)10米,結(jié)果延期20天完成

B. 每天比原計(jì)劃少鋪設(shè)10米,結(jié)果延期20天完成

C. 每天比原計(jì)劃多鋪設(shè)10米,結(jié)果提前20天完成

D. 每天比原計(jì)劃少鋪設(shè)10米,結(jié)果提前20天完成

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了積極響應(yīng)國(guó)家新農(nóng)村建設(shè),某市鎮(zhèn)政府采用了移動(dòng)宣講的形式進(jìn)行宣傳動(dòng)員.如圖,筆直公路的一側(cè)點(diǎn)處有一村莊,村莊到公路的距離為800米,假使宣講車(chē)周?chē)?/span>1000米以?xún)?nèi)能聽(tīng)到廣播宣傳,宣講車(chē)在公路上沿方向行駛時(shí):

1)請(qǐng)問(wèn)村莊能否聽(tīng)到宣傳,并說(shuō)明理由;

2)如果能聽(tīng)到,已知宣講車(chē)的速度是每分鐘300米,那么村莊總共能聽(tīng)到多長(zhǎng)時(shí)間的宣傳?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù)y=(x>0)的圖象與直線y=x交于點(diǎn)M,∠AMB=90°,其兩邊分別與兩坐標(biāo)軸的正半軸交于點(diǎn)A,B,四邊形OAMB的面積為6.

(1)求k的值;

(2)點(diǎn)P在反比例函數(shù)y=(x>0)的圖象上,若點(diǎn)P的橫坐標(biāo)為3,∠EPF=90°,其兩邊分別與x軸的正半軸,直線y=x交于點(diǎn)E,F(xiàn),問(wèn)是否存在點(diǎn)E,使得PE=PF?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,秋千鏈子的長(zhǎng)度為4 m,當(dāng)秋千向兩邊擺動(dòng)時(shí),兩邊的最大擺動(dòng)角度均為30°.則它擺動(dòng)至最高位置與最低位置的高度之差為(  )

A. 2 m B. (4-) m C. (4-2) m D. (4-2) m

查看答案和解析>>

同步練習(xí)冊(cè)答案