【題目】如圖,廣場中心菱形花壇ABCD的周長是32米,∠A=60°,則A、C兩點之間的距離為(

A. 4 B. C. 8 D.

【答案】D

【解析】由四邊形ABCD為菱形,得到四條邊相等,對角線垂直且互相平分,將問題轉(zhuǎn)化為求OA;根據(jù)∠BAD=60°得到△ABD為等邊三角形,即可求出OB的長,再利用勾股定理求出OA即可求解.

設AC與BD交于點O.

∵四邊形ABCD為菱形,

∴AC⊥BD,OA=OC,OB=OD,AB=BC=CD=AD=32÷4=8米.

∵∠BAD=60°,AB=AD,

∴△ABD為等邊三角形,

∴BD=AB=8米,

∴OD=OB=4米.

在Rt△AOB中,根據(jù)勾股定理得:OA=4(米),

∴AC=2OA=8米.

故選D.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】14分)盤錦紅海灘景區(qū)門票價格80元/人,景區(qū)為吸引游客,對門票價格進行動態(tài)管理,非節(jié)假日打a折,節(jié)假日期間,10人以下(包括10人)不打折,10人以上超過10人的部分打b折,設游客為x人,門票費用為y元,非節(jié)假日門票費用(元)及節(jié)假日門票費用(元)與游客x(人)之間的函數(shù)關(guān)系如圖所示.

(1)a= ,b=

(2)直接寫出、與x之間的函數(shù)關(guān)系式;

(3)導游小王6月10日(非節(jié)假日)帶A旅游團,6月20日(端午節(jié))帶B旅游團到紅海灘景區(qū)旅游,兩團共計50人,兩次共付門票費用3040元,求A、B兩個旅游團各多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一個形如四邊形的點陣,第1層每邊有2個點,第2層每邊有3個點,第3層每邊有4個點,依此類推.

(1)10層共有  個點,第n層共有  個點;

(2)如果某一層共有96個點,它是第幾層?

(3)有沒有一層點數(shù)為150個點,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB垂直CD(即∠AOC=AOD=BOD=BOC=90°)

(1)比較∠AOD,EOB,AOE大小(用“<”連接)

(2)如∠EOC=28°,求∠EOB和∠EOD的度數(shù)(適當寫出解題過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,∠ABC的平分線交AD于點E,∠BED的平分線交DC于點F,若AB=6,點F恰為DC的中點,則BC=(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:點C在直線AB上,AC=8cm,BC=6cm,點M、N分別是AC、BC的中點,求線段MN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合題
(1)如圖①,四邊形ABCD是正方形,點G是BC上的任意一點,BF⊥AG于點F,DE⊥AG于點E,探究BF,DE,EF之間的數(shù)量關(guān)系,第一學習小組合作探究后,得到DE﹣BF=EF,請證明這個結(jié)論;
(2)若(1)中的點G在CB的延長線上,其余條件不變,請在圖②中畫出圖形,并直接寫出此時BF,DE,EF之間的數(shù)量關(guān)系;
(3)如圖③,四邊形ABCD內(nèi)接于⊙O,AB=AD,E,F(xiàn)是AC上的兩點,且滿足∠AED=∠BFA=∠BCD,試判斷AC,DE,BF之間的數(shù)量關(guān)系,并說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線分別與y軸、x軸交于點A、點B,點C的坐標為(-3,0),D為直線AB上一動點,連接CDy軸于點E.

(1) B的坐標為__________,不等式的解集為___________

(2) SCOE=SADE,求點D的坐標;

(3) 如圖2,以CD為邊作菱形CDFG,且∠CDF=60°.當點D運動時,點G在一條定直線上運動,請求出這條定直線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程組:

(1)

(2)

(3)

查看答案和解析>>

同步練習冊答案