【題目】如圖,已知在⊙O中,AB是⊙O的直徑,AC=8,BC=6.
(1)求⊙O的面積;
(2)若D為⊙O上一點(diǎn),且△ABD為等腰三角形,求CD的長(zhǎng).
【答案】(1)25π;(2)CD1=,CD2=7
【解析】分析:(1)利用圓周角定理的推論得到∠C是直角,利用勾股定理求出直徑AB,再利用圓的面積公式即可得到答案;
(2)分點(diǎn)D在上半圓中點(diǎn)與點(diǎn)D在下半圓中點(diǎn)這兩種情況進(jìn)行計(jì)算即可.
詳解:(1)∵AB是⊙O的直徑,
∴∠ACB=90°,
∵AB是⊙O的直徑,
∴AC=8,BC=6,
∴AB=10,
∴⊙O的面積=π×52=25π.
(2)有兩種情況:
①如圖所示,當(dāng)點(diǎn)D位于上半圓中點(diǎn)D1時(shí),可知△ABD1是等腰直角三角形,且OD1⊥AB,
作CE⊥AB垂足為E,CF⊥OD1垂足為F,可得矩形CEOF,
∵CE=,
∴OF= CE=,
∴,
∵=,
∴,
∴,
∴;
②如圖所示,當(dāng)點(diǎn)D位于下半圓中點(diǎn)D2時(shí),
同理可求.
∴CD1=,CD2=7
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:,點(diǎn)、、在射線上,點(diǎn)、、...在射線上,、、...均為等邊三角形,若,則的邊長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】建設(shè)環(huán)境優(yōu)美、文明和諧的新農(nóng)村,某村村委會(huì)決定在村道兩旁種植A,B兩種樹木,需要購(gòu)買這兩種樹苗1000棵.A,B兩種樹苗的相關(guān)信息如下表:
設(shè)購(gòu)買A種樹苗x棵,綠化村道的總費(fèi)用為y元.解答下列問(wèn)題:
(1)寫出y(元)與x(棵)之間的函數(shù)關(guān)系式;
(2)若這批樹苗種植后成活了925棵,則綠化村道的總費(fèi)用需要多少元?
(3)若綠化村道的總費(fèi)用不超過(guò)31000元,則最多可購(gòu)買B種樹苗多少棵?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在數(shù)軸上A點(diǎn)表示數(shù)a,B點(diǎn)示數(shù)b,C點(diǎn)表示數(shù)c,b是最小的正整數(shù),且a,b滿足 +(c-7)2=0.
(1) a= ,b= ,c= .
(2) 若將數(shù)軸折疊,使得A點(diǎn)與C點(diǎn)重合,則點(diǎn)B與數(shù) 表示的點(diǎn)重合.
(3) 點(diǎn)A,B,C開始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長(zhǎng)度和4個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),假設(shè)t秒鐘過(guò)后,若點(diǎn)A與點(diǎn)B之間的距離表示為AB,點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC.則AB= ,AC= ,BC= .(用含t的代數(shù)式表示)
(4) 請(qǐng)問(wèn):3BC-2AB的值是否隨著時(shí)間t的變化而改變? 若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A1,A2,A3,…,An是x軸上的點(diǎn),且OA1=A1A2=A2A3=…=An-1An=1,分別過(guò)點(diǎn)A1,A2,A3,…,An作x軸的垂線交二次函數(shù)y=x2(x>0)的圖象于點(diǎn)P1,P2,P3,…,Pn,若記△OA1P1的面積為S1,過(guò)點(diǎn)P1作P1B1⊥A2P2于點(diǎn)B1,記△P1B1P2的面積為S2,過(guò)點(diǎn)P2作P2B2⊥A3P3于點(diǎn)B2,記△P2B2P3的面積為S3……依次進(jìn)行下去,則S3=________,最后記△Pn-1Bn-1Pn(n>1)的面積為Sn,則Sn=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)銷售、兩種品牌的洗衣機(jī),進(jìn)價(jià)及售價(jià)如下表:
品牌 | ||
進(jìn)價(jià)(元/臺(tái)) | 1500 | 1800 |
售價(jià)(元/臺(tái)) | 1800 | 2200 |
(1)該商場(chǎng)9月份用45000元購(gòu)進(jìn)、兩種品牌的洗衣機(jī),全部售完后獲利9600元,求商場(chǎng)9月份購(gòu)進(jìn)、兩種洗衣機(jī)的數(shù)量;
(2)該商場(chǎng)10月份又購(gòu)進(jìn)、兩種品牌的洗衣機(jī)共用去36000元
①問(wèn)該商場(chǎng)共有幾種進(jìn)貨方案?請(qǐng)你把所有方案列出來(lái);
②通過(guò)計(jì)算說(shuō)明洗衣機(jī)全部銷售完后哪種進(jìn)貨方案所獲得的利潤(rùn)最大
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某鄉(xiāng)A,B兩村盛產(chǎn)香梨,A村有香梨200噸,B村有香梨300噸,現(xiàn)將這些香梨運(yùn)到C,D兩個(gè)冷藏倉(cāng)庫(kù).已知C倉(cāng)庫(kù)可儲(chǔ)存240噸,D倉(cāng)庫(kù)可儲(chǔ)存260噸,從A村運(yùn)往C,D兩處的費(fèi)用分別為每噸40元和45元;從B村運(yùn)往C,D兩處的費(fèi)用分別為每噸25元和32元.設(shè)從A村運(yùn)往C倉(cāng)庫(kù)的香梨為x噸,A,B兩村運(yùn)香梨往兩倉(cāng)庫(kù)的運(yùn)輸費(fèi)用分別為yA元,yB元.
(1)請(qǐng)?zhí)顚懴卤恚⑶蟪?/span>yA,yB與x之間的函數(shù)關(guān)系式;
(2)當(dāng)x為何值時(shí),A村的運(yùn)費(fèi)較少?
(3)請(qǐng)問(wèn)怎樣調(diào)運(yùn),才能使兩村的運(yùn)費(fèi)之和最小?求出最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)軸上兩點(diǎn)A.B對(duì)應(yīng)的數(shù)分別為﹣2和7,點(diǎn)M為數(shù)軸上一動(dòng)點(diǎn).
(1)請(qǐng)畫出數(shù)軸,并在數(shù)軸上標(biāo)出點(diǎn)A、點(diǎn)B;
(2)若點(diǎn)M到A的距離是點(diǎn)M到B的距離的兩倍,我們就稱點(diǎn)M是(A,B)的好點(diǎn).
①若點(diǎn)M運(yùn)動(dòng)到原點(diǎn)O時(shí),此時(shí)點(diǎn)M (A,B)的好點(diǎn)(填是或者不是)
②若點(diǎn)M以每秒1個(gè)單位的速度從原點(diǎn)O開始運(yùn)動(dòng),當(dāng)M是(B,A)的好點(diǎn)時(shí),求點(diǎn)M的運(yùn)動(dòng)方向和運(yùn)動(dòng)時(shí)間
(3)試探究線段BM和AM的差即BM﹣AM的值是否一定發(fā)生變化?若變化,請(qǐng)說(shuō)明理由:若不變,請(qǐng)求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人在筆直的湖邊公路上同起點(diǎn)、同終點(diǎn)、同方向勻速步行2400米,先到終點(diǎn)的人原地休息.已知甲先出發(fā)4分鐘,在整個(gè)步行過(guò)程中,甲、乙兩人的距離y(米)與甲出發(fā)的時(shí)間t(分)之間的關(guān)系如圖所示,下列結(jié)論:
①甲步行的速度為60米/分;
②乙走完全程用了32分鐘;
③乙用16分鐘追上甲;
④乙到達(dá)終點(diǎn)時(shí),甲離終點(diǎn)還有300米
其中正確的結(jié)論有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com