【題目】函數 yl= x ( x ≥0 ) , ( x > 0 )的圖象如圖所示,則結論: ① 兩函數圖象的交點A的坐標為(3 ,3 ) ② 當 x > 3 時, ③ 當 x =1時, BC = 8
④ 當 x 逐漸增大時, yl 隨著 x 的增大而增大,y2隨著 x 的增大而減。渲姓_結論的序號是_ .
【答案】①③④
【解析】逐項分析求解后利用排除法求解.①可列方程組求出交點A的坐標加以論證.②由圖象分析論證.③根據已知先確定B、C點的坐標再求出BC.④由已知和函數圖象分析.
解:①根據題意列解方程組 ,
解得 ,;
∴這兩個函數在第一象限內的交點A的坐標為(3,3),正確;
②當x>3時,y1在y2的上方,故y1>y2,錯誤;
③當x=1時,y1=1,y2==9,即點C的坐標為(1,1),點B的坐標為(1,9),所以BC=9-1=8,正確;
④由于y1=x(x≥0)的圖象自左向右呈上升趨勢,故y1隨x的增大而增大,
y2=(x>0)的圖象自左向右呈下降趨勢,故y2隨x的增大而減小,正確.
因此①③④正確,②錯誤.
故答案為:①③④.
本題考查了一次函數和反比例函數圖象的性質.解決此類問題的關鍵是由已知和函數圖象求出正確答案加以論證.
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,點P是AB的中點,的延長線于點E,連接AE,過點A作交DP于點F,連接BF、下列結論中:≌;;是等邊三角形;;其中正確的是
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點A(1,a),將線段OA平移至線段BC,B(b,0),a是m+6n的算術平方根,=3,n=,且m<n,正數b滿足(b+1)2=16.
(1)直接寫出A、B兩點坐標為:A ,B ;
(2)如圖1,連接AB、OC,求四邊形AOCB的面積;
(3)如圖2,若∠AOB=a,點P為y軸正半軸上一動點,試探究∠CPO與∠BCP之間的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在菱形ABCD中,對角線AC、BD相交于點O,DE∥AC,AE∥BD.
(1)、求證:四邊形AODE是矩形;(2)、若AB=6,∠BCD=120°,求四邊形AODE的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,為了測出某塔CD的高度,在塔前的平地上選擇一點A,用測角儀測得塔頂D的仰角為30°,在A、C之間選擇一點B(A、B、C三點在同一直線上).用測角儀測得塔頂D的仰角為75°,且AB間的距離為40m.
(1)求點B到AD的距離;
(2)求塔高CD(結果用根號表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,菱形OACB的頂點O在原點,點C的坐標為(4,0),點B的縱坐標是﹣1,則頂點A坐標是( )
A.(2,1)
B.(1,﹣2)
C.(1,2)
D.(2,﹣1)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABF中,∠F=90°,點C是線段BF上異于點B和點F的一點,連接AC,過點C作CD⊥AC交AB于點D,過點C作CE⊥AB交AB于點E,則下列說法中,錯誤的是( )
A.△ABC中,AB邊上的高是CEB.△ABC中,BC邊上的高是AF
C.△ACD中,AC邊上的高是CED.△ACD中,CD邊上的高是AC
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A(2,0),點B(1,3).
(1)畫出將△OAB繞原點順時針旋轉90°后所得的△OA1B1,并寫出點A1,B1的坐標;
(2)畫出△OAB關于原點O的中心對稱圖形△OA2B2,并寫出點A2,B2的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,A、B兩個碼頭分別在一條河的兩岸AC、BD上,河岸AC、BD均為東西走向,一艘客輪以每小時30千米的速度由A碼頭出發(fā)沿北偏東50°的方向航行至B碼頭,用時1.2小時,求該河的寬度(結果精確到1千米)
【參考數據:sin50°=0.77,cos50°=0.64,tan50°=1.20】
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com