【題目】如圖,在△ABC中,AB=AC,點(diǎn)D在AC上,且BD=BC=AD,求∠A的度數(shù).
【答案】∠A=36°.
【解析】
設(shè)∠A=x°.在△ABD中,由等邊對(duì)等角得到∠A=∠ABD=x°,由三角形外角的性質(zhì)得到∠BDC=∠A+∠ABD=2x°.在△BDC中,由等邊對(duì)等角得到∠BDC=∠BCD=2x°.
在△ABC中,由等邊對(duì)等角得到∠ABC=∠BCD=2x°,由三角形內(nèi)角和定理得到x+2x+2x=180,解方程即可.
設(shè)∠A=x°.
∵BD=AD,∴∠A=∠ABD=x°,
∠BDC=∠A+∠ABD=2x°.
∵BD=BC,∴∠BDC=∠BCD=2x°.
∵AB=AC,∴∠ABC=∠BCD=2x°,
在△ABC中,x+2x+2x=180,
解得:x=36,∴∠A=36°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明學(xué)習(xí)了特殊的四邊形---平行四邊形后,對(duì)特殊四邊形的探究產(chǎn)生了興趣,發(fā)現(xiàn)另外一類特殊四邊形,如圖1,我們把兩條對(duì)角線互相垂直的四邊形叫做垂美四邊形.
(1)概念理在平行四邊形、矩形、菱形、正方形中,一定是垂美四邊形的是 .
(2)性質(zhì)探究:如圖1,四邊形ABCD是垂美四邊形,試探究?jī)山M對(duì)邊AB、CD與BC、AD之間的數(shù)量關(guān)系.
(3)問題解決:如圖2,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5.
①求證:四邊形BCGE為垂美四邊形;
②直接寫出四邊形BCGE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AE⊥BD于E,CF⊥BD于F,AB=CD,AE=CF,則圖中全等三角形共有( )
A.1對(duì)B.2對(duì)C.3對(duì)D.4對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的一邊BC為直徑作⊙O,交AB于D,E為AC的中點(diǎn),DE切⊙O于點(diǎn)D.
(1)請(qǐng)判斷AC與⊙O的位置關(guān)系,并說明理由.
(2)若半徑為5,BD為8,求線段AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是∠AOB內(nèi)任意一點(diǎn),∠AOB=30°,OP=8,點(diǎn)M和點(diǎn)N分別是射線OA和射線OB上的動(dòng)點(diǎn),則△PMN周長(zhǎng)的最小值為( )
A. 5B. 6C. 8D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=2,∠B=∠C=40°,點(diǎn)D在線段BC上運(yùn)動(dòng)(D不與B、C重合),連接AD,作∠ADE=40°,DE交線段AC于E.
(1)當(dāng)∠BDA=115°時(shí),∠EDC= °,∠DEC= °;點(diǎn)D從B向C運(yùn)動(dòng)時(shí),∠BDA逐漸變 (填“大”或“小”);
(2)當(dāng)DC等于多少時(shí),△ABD≌△DCE,請(qǐng)說明理由;
(3)在點(diǎn)D的運(yùn)動(dòng)過程中,△ADE的形狀可以是等腰三角形嗎?若可以,請(qǐng)直接寫出∠BDA的度數(shù).若不可以,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=2x2+m的圖像經(jīng)過點(diǎn)(0,-4),正方形ABCD的頂點(diǎn)C,D在x軸上,點(diǎn)A,B恰好在二次函數(shù)的圖像上,則圖中陰影部分的面積之和為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于反比例函數(shù),下列說法不正確的是( )
A. 當(dāng)時(shí), 隨的增大而減小 B. 點(diǎn)在它的圖象上
C. 它的圖象在第一、三象限 D. 當(dāng)時(shí), 隨的增大而增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用適當(dāng)?shù)?方法解下列一元二次方程:
(1)(2x﹣1)2﹣9=0
(2)(x﹣1)(x+2)=4
(3)3x2﹣1=2x
(4)3(x﹣5)2=2(5﹣x)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com