【題目】如圖,一個點從數(shù)軸上的原點開始,先向右移動3個單位長度,再向左移動5個單位長度,可以看到終點表示的數(shù)是﹣2.
已知點A是數(shù)軸上的點,完成下列各題:
(1)如果點A表示的數(shù)是3,將點A先向左移動7個單位長度,再向右移動5個單位長度,那么終點B表示的數(shù)是 , A、B兩點間的距離為;
(2)如果點A表示的數(shù)是﹣4,將點A先向右移動168個單位長度,再向左移動256個單位長度,那么終點B表示的數(shù)是 , A、B兩點間的距離為;
一般地,如果點A表示的數(shù)是m,將點A先向右移動n個單位長度,再向左移動t個單位長度,那么終點B表示的數(shù)是 , A、B兩點間的距離為 .
【答案】
(1)1;1
(2)﹣92;88;m+n﹣t;|n﹣t|
【解析】解:(1)∵點A表示數(shù)3,∴點A向左移動7個單位長度,再向右移動5個單位長度,終點B表示的數(shù)是3﹣7+5=1,
A,B兩點間的距離是|3﹣7+5|=1,
所以答案是1,1;(2)∵點A表示數(shù)﹣4,∴將A點向右移動168個單位長度,再向左移動256個單位長度,
那么終點B表示的數(shù)是﹣4+168﹣256=﹣92,A、B兩點間的距離是|﹣4+92|=88;
所以答案是﹣92,88;
∵A點表示的數(shù)為m,∴將A點向右移動n個單位長度,再向左移動t個單位長度,
那么點B表示的數(shù)為(m+n﹣t),A,B兩點間的距離為|n﹣t|,
所以答案是m+n﹣t,|n﹣t|.
【考點精析】掌握數(shù)軸是解答本題的根本,需要知道數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線.
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中,正確的個數(shù)有( )
①若mx=my,則mx-my=0 ②若mx=my,則x=y
③若mx=my,則mx+my=2my ④若x=y,則mx=my
A. 2個 B. 3個 C. 4個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】給出下列命題,正確的
①等腰三角形的角平分線、中線和高重合;②等腰三角形兩腰上的高相等; ③等腰三角形最小邊是底邊;④等邊三角形的高、中線、角平分線都相等;⑤等腰三角形都是銳角三角形
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小麗做一道數(shù)學題:“已知兩個多項式A,B,B為 ﹣5x﹣6,求A+B”.小麗把A+B看成A﹣B,計算結果是 +10x+12.根據(jù)以上信息,你能求出A+B的結果嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中,錯誤的是( ).
A. 一組對邊平行且相等的四邊形是平行四邊形
B. 兩條對角線互相垂直且平分的四邊形是菱形
C. 四個角都相等的四邊形是矩形
D. 四條邊相等的四邊形是正方形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算
①13+(﹣56)+47+(﹣34)
②( ﹣ ﹣ )×(﹣24)
③(﹣1)10×2+(﹣2)3÷4
④﹣22+|5﹣8|+24÷(﹣3)× .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC和△DEF均是邊長為4的等邊三角形,△DEF的頂點D為△ABC的一邊BC的中點,△DEF繞點D旋轉,且邊DF、DE始終分別交△ABC的邊AB、AC于點H、G,圖中直線BC兩側的圖形關于直線BC成軸對稱.連結HH′、HG、GG′、H′G′,其中HH′、GG′分別交BC于點I、J.
(1)求證:△DHB∽△GDC;
(2)設CG=x,四邊形HH′G′G的面積為y,
①求y關于x的函數(shù)解析式和自變量x的取值范圍.
②求當x為何值時,y的值最大,最大值為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,現(xiàn)有甲、乙兩個小分隊分別同時從B、C兩地出發(fā)前往A地,甲沿線路BA行進,乙沿線路CA行進,已知C在A的南偏東55°方向,AB的坡度為1:5,同時由于地震原因造成BC路段泥石堵塞,在BC路段中位于A的正南方向上有一清障處H,負責搶修BC路段,已知BH為12000m.
(1)求BC的長度;
(2)如果兩個分隊在前往A地時勻速前行,且甲的速度是乙的速度的三倍.試判斷哪個分隊先到達A地.(tan55°≈1.4,sin55°≈0.84,cos55°≈0.6,≈5.01,結果保留整數(shù))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com