【題目】已知:拋物線yax22mx3m2)(m0)交x軸于AB兩點(diǎn)(其中A點(diǎn)在B點(diǎn)左側(cè)),交y軸于點(diǎn)C

1)若A點(diǎn)坐標(biāo)為(﹣10),則B點(diǎn)坐標(biāo)為 

2)如圖1,在 1)的條件下,且am1,設(shè)點(diǎn)My軸上且滿足∠OCA+AMO=∠ABC,試求點(diǎn)M坐標(biāo).

3)如圖2,在y軸上有一點(diǎn)P0,n)(點(diǎn)P在點(diǎn)C的下方),直線PAPB分別交拋物線于點(diǎn)E、F,若,求的值.

【答案】1)(3,0);(2)滿足要求的M點(diǎn)的坐標(biāo)有(0,﹣2)、(0,2);(3

【解析】

1)將A點(diǎn)坐標(biāo)代入拋物線解析式中求出m的值,然后可將拋物線解析式寫成交點(diǎn)式即可知道B點(diǎn)坐標(biāo).

2)先考慮My軸負(fù)半軸的情況,在y軸負(fù)半軸上截取OG=OA=1,連AG,可證△GMA∽△GAC,然后根據(jù)相似三角形的性質(zhì)列方程即可求出M點(diǎn)坐標(biāo),由對稱性可直接寫出另一種情況.

3)作EGx軸于點(diǎn)G,FHy軸于點(diǎn)H,由△EAGPAO得到線段比例等式推出OP的長度,得出P點(diǎn)坐標(biāo),算出直線PB解析式,與拋物線解析式聯(lián)立可求出F點(diǎn)橫坐標(biāo),再由△PFH∽△PBO即可得到所求線段比.

1)將(﹣1,0)代入yax22mx3m2)得:1+2m3m20,

解得:m1m=﹣(舍),

yax22mx3m2)=ax+1)(x3),

B3,0).

故答案為:(30).

2)當(dāng)am1,時(shí),拋物線解析式為yx22x3,

C0,﹣3

OBOC3,∠ABC45°,

如圖1,My軸負(fù)半軸上,在y軸負(fù)半軸上截取OGOA1,連AG

則∠AGO45°=∠ABC,AG

OCA+∠AMO=∠ABC,

∴∠OCA+AMO45°,

又∵∠OCA+GAC=∠AGO45°,

∴∠AMG=∠GAC,

又∵∠AGM=∠CGA,

∴△GMA∽△GAC,

AG2MGGC,

GCOCOG2,設(shè)M0,a

2=(﹣1a2

a=﹣2,

M的坐標(biāo)為(0,﹣2).

根據(jù)對稱性可知(02)也符合要求.

綜上所述,滿足要求的M點(diǎn)的坐標(biāo)有:(0,﹣2)、(0,2).

3)由拋物線解析式可得:A(﹣m,0),B3m,0).

,

,

如圖2,作EGx軸于點(diǎn)GFHy軸于點(diǎn)H,

軸,軸,

EAGPAO,△PFH∽△PBO,

AGAOm,OP2EG

xE=﹣m,yEam2,即EGam2,

OPam2,

P0,﹣am2),

又∵B3m,0),

∴直線PB的解析式為:yamxam2,

amxam2ax22mx3m2),

2x27mx+3m20,

x13m(舍),x2m,

FHm,

PFH∽△PBO

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:關(guān)于的函數(shù)的圖象與坐標(biāo)軸只有兩個(gè)不同的交點(diǎn)、,點(diǎn)坐標(biāo)為,則的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷某校數(shù)學(xué)興趣小組設(shè)計(jì)了你最喜歡的溝通方式調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機(jī)調(diào)查了部分學(xué)生,將統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請結(jié)合圖中所給的信息解答下列問題:

(1)這次統(tǒng)計(jì)共抽查了多少名學(xué)生?在扇形統(tǒng)計(jì)圖中,表示" "的扇形圓心角的度數(shù)是多少;

(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)該校共有1500名學(xué)生,請估計(jì)該校最喜歡用 “微信”進(jìn)行溝通的學(xué)生大約有多少名?

(4)某天甲、乙兩名同學(xué)都想從微信"、""、電話"三種溝通方式中選一種方式與對方聯(lián)系,請用列表或畫樹狀圖的方法求出甲、乙兩名同學(xué)恰好選擇同一種溝通方式的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲、乙只捕撈船同時(shí)從A港出海捕魚,甲船以每小時(shí)15 km的速度沿北偏西60°方向前進(jìn),乙船以每小時(shí)15 km的速度沿東北方向前進(jìn).甲船航行2 h到達(dá)C處,此時(shí)甲船發(fā)現(xiàn)漁具丟在了乙船上,于是甲船快速(勻速)沿北偏東75°的方向追趕乙船,結(jié)果兩船在B處相遇.問:

(1)甲船從C處出發(fā)追趕上乙船用了多少時(shí)間?

(2)甲船追趕乙船的速度是每小時(shí)多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為提升學(xué)生的藝術(shù)素養(yǎng),學(xué)校計(jì)劃開設(shè)四門藝術(shù)選修課:A.書法;B.繪畫;C.樂器;D.舞蹈.為了解學(xué)生對四門功課的喜歡情況,在全校范圍內(nèi)隨機(jī)抽取若干名學(xué)生進(jìn)行問卷調(diào)查(每個(gè)被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門).將數(shù)據(jù)進(jìn)行整理,并繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請結(jié)合圖中所給信息解答下列問題:

(1)本次調(diào)查的學(xué)生共有多少人?扇形統(tǒng)計(jì)圖中∠α的度數(shù)是多少?

(2)請把條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)學(xué)校為舉辦2018年度校園文化藝術(shù)節(jié),決定從A.書法;B.繪畫;C.樂器;D.舞蹈四項(xiàng)藝術(shù)形式中選擇其中兩項(xiàng)組成一個(gè)新的節(jié)目形式,請用列表法或樹狀圖求出選中書法與樂器組合在一起的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)在邊上,點(diǎn)為邊上一動點(diǎn),連接關(guān)于所在直線對稱,點(diǎn)分別為的中點(diǎn),連接并延長交所在直線于點(diǎn),連接.當(dāng)為直角三角形時(shí),的長為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠BAC45°,∠ACB30°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到△AB1C1,當(dāng)點(diǎn)C1、B1C三點(diǎn)共線時(shí),旋轉(zhuǎn)角為α,連接BB1,交AC于點(diǎn)D.下列結(jié)論:AC1C為等腰三角形;AB1D∽△BCD③α75°;CACB1,其中正確的是( 。

A.①③④B.①②④C.②③④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線l1,l2l3,l4是同一平面內(nèi)的一組平行線.

1)如圖1,正方形ABCD4個(gè)頂點(diǎn)都在這些平行線上,若四條直線中相鄰兩條之間的距離都是1,其中點(diǎn)A,點(diǎn)C分別在直線l1l4上,求正方形的面積.

2)如圖2,正方形ABCD4個(gè)頂點(diǎn)分別在四條平行線上,若四條直線中相鄰兩條之間的距離依次為h1,h2h3

①求證:h1h3

②設(shè)正方形ABCD的面積為S,求證:S2h12+2h1h2+h22

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,DAB中點(diǎn),過點(diǎn)DDF//BCAC于點(diǎn)E,且DE=EF,連接AF,CF,CD

1)求證:四邊形ADCF為平行四邊形;

2)若∠ACD=45°,∠EDC=30°,BC=4,求CE的長.

查看答案和解析>>

同步練習(xí)冊答案