【題目】如圖是按照一定規(guī)律畫出的樹形圖,經(jīng)觀察可以發(fā)現(xiàn):圖A2比圖A1多出2個(gè)樹枝,圖A3比圖A2多出4個(gè)樹枝,圖A4比圖A3多出8個(gè)樹枝”……照此規(guī)律,圖A6比圖A2多出樹枝”( )

A.32個(gè)B.56個(gè)C.60個(gè)D.64個(gè)

【答案】C

【解析】

根據(jù)所給圖形得到后面圖形比前面圖形多的樹枝的個(gè)數(shù)用底數(shù)為2的冪表示的形式,代入求值即可.

∵圖A2比圖A1多出2個(gè)樹枝”,A3比圖A2多出4個(gè)樹枝”,A4比圖A3多出8個(gè)樹枝,

∴圖形從第2個(gè)開始后一個(gè)與前一個(gè)的差依次是:2, ,…, .

∴第5個(gè)樹枝為15+=31,6個(gè)樹枝為:31+=63,

∴第(6)個(gè)圖比第(2)個(gè)圖多633=60個(gè)

故答案為:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的文字后,回答問題:

甲、乙兩人同時(shí)解答題目:化簡(jiǎn)并求值:,其中a=5甲、乙兩人的解答不同;

甲的解答是:;

乙的解答是:

1  的解答是錯(cuò)誤的.

2)錯(cuò)誤的解答在于未能正確運(yùn)用二次根式的性質(zhì):  

3)模仿上題解答:化簡(jiǎn)并求值:,其中a=2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明為了測(cè)量樓房AB的高度,他從樓底的B處沿著斜坡向上行走20m,到達(dá)坡頂D處.已知斜坡的坡角為15°.(以下計(jì)算結(jié)果精確到0.1m)

(1)求小明此時(shí)與地面的垂直距離CD的值;

(2)小明的身高ED是1.6m,他站在坡頂看樓頂A處的仰角為45°,求樓房AB的高度.(sin15°≈0.2588,cos15°≈0.9659 ,tan≈.0.2677 )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形 中,的平分線于點(diǎn) , 的平分線 于點(diǎn) ,則 的長(zhǎng)為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,矩形ABCD中,點(diǎn)EDC上且DEEC23,連接BE交對(duì)角線AC于點(diǎn)O.延長(zhǎng)ADBE的延長(zhǎng)線于點(diǎn)F,則△AOF與△BOC的面積之比為( 。

A. 94B. 32C. 259D. 169

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把幾個(gè)圖形拼成一個(gè)新的圖形,再通過兩種不同的方法計(jì)算同一個(gè)圖形的面積,可以得到一個(gè)等式,也可以求出一些不規(guī)則圖形的面積.

例如,由圖1,可得等式:(a+2b)(a+b=a2+3ab+2b2

(1)如圖2,將幾個(gè)面積不等的小正方形與小長(zhǎng)方形拼成一個(gè)邊長(zhǎng)為a+b+c的正方形,試用不同的形式表示這個(gè)大正方形的面積,你能發(fā)現(xiàn)什么結(jié)論?請(qǐng)用等式表示出來.

(2)利用(1)中所得到的結(jié)論,解決下面的問題: 已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值.

(3)如圖3,將兩個(gè)邊長(zhǎng)分別為ab的正方形拼在一起,B,C,G三點(diǎn)在同一直線上,連接BDBF.若這兩個(gè)正方形的邊長(zhǎng)滿足a+b=10,ab=20,請(qǐng)求出陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩輛汽車分別從A、B兩地同時(shí)出發(fā),沿同一條公路相向而行,乙車出發(fā)2h后休息,與甲車相遇后,繼續(xù)行駛.設(shè)甲、乙兩車與B地的路程分別為ykm,ykm,甲車行駛的時(shí)間為xh,y、y與x之間的函數(shù)圖象如圖所示,結(jié)合圖象解答下列問題:

1乙車休息了 h.

2求乙車與甲車相遇后y關(guān)于x的函數(shù)表達(dá)式,并寫出自變量x的取值范圍.

3當(dāng)兩車相距40km時(shí),求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)語句畫圖,并回答問題,如圖,∠AOB內(nèi)有一點(diǎn)P.

(1)過點(diǎn)P畫PC∥OB交OA于點(diǎn)C,畫PD∥OA交OB于點(diǎn)D.

(2)寫出圖中與∠CPD互補(bǔ)的角   .(寫兩個(gè)即可)

(3)寫出圖中∠O相等的角   .(寫兩個(gè)即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以點(diǎn)P(-1,0)為圓心的圓,交x軸于B、C兩點(diǎn)(BC的左側(cè)),交y軸于A、D兩點(diǎn)(AD的下方),AD=,將ABC繞點(diǎn)P旋轉(zhuǎn)180°,得到MCB.

(1)求B、C兩點(diǎn)的坐標(biāo);

(2)請(qǐng)?jiān)趫D中畫出線段MB、MC,并判斷四邊形ACMB的形狀(不必證明),求出點(diǎn)M的坐標(biāo);

(3)動(dòng)直線l從與BM重合的位置開始繞點(diǎn)B順時(shí)針旋轉(zhuǎn),到與BC重合時(shí)停止,設(shè)直線lCM交點(diǎn)為E,點(diǎn)QBE的中點(diǎn),過點(diǎn)EEGBCG,連接MQ、QG.請(qǐng)問在旋轉(zhuǎn)過程中∠MQG的大小是否變化?若不變,求出∠MQG的度數(shù);若變化,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案