【題目】如圖所示,把同樣大小的黑色棋子擺放在正多邊形的邊上,按照這樣的規(guī)律擺下去,則第n(n是大于0的整數(shù))個圖形需要黑色棋子的個數(shù)是 .
【答案】n(n+2)
【解析】第1個圖形是三角形,有3條邊,每條邊上有2個點,重復了3個點,需要黑色棋子2×3﹣3個,
第2個圖形是四邊形,有4條邊,每條邊上有3個點,重復了4個點,需要黑色棋子3×4﹣4個,
第3個圖形是五邊形,有5條邊,每條邊上有4個點,重復了5個點,需要黑色棋子4×5﹣5個,
…
則第n個圖形需要黑色棋子的個數(shù)是(n+1)(n+2)﹣(n+2)=n(n+2).
所以答案是:n(n+2).
【考點精析】利用數(shù)與式的規(guī)律對題目進行判斷即可得到答案,需要熟知先從圖形上尋找規(guī)律,然后驗證規(guī)律,應用規(guī)律,即數(shù)形結(jié)合尋找規(guī)律.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c經(jīng)過坐標原點,并與x軸交于點A(2,0).
(1)求此拋物線的解析式;
(2)寫出頂點坐標及對稱軸;
(3)若拋物線上有一點B,且S△OAB=3,求點B的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,BC⊥AF于點C,∠A+∠1=90°.
(1)求證:AB∥DE;
(2)如圖2,點P從點A出發(fā),沿線段AF運動到點F停止,連接PB,PE.則∠ABP,∠DEP,∠BPE三個角之間具有怎樣的數(shù)量關系(不考慮點P與點A,D,C重合的情況)?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“世界讀書日”前夕,某校開展了“讀書助我成長”的閱讀活動.為了了解該校學生在此次活動中課外閱讀書籍的數(shù)量情況,隨機抽取了部分學生進行調(diào)查,將收集到的數(shù)據(jù)進行整理,繪制出兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖信息解決下列問題:
(1)求本次調(diào)查中共抽取的學生人數(shù);
(2)補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,閱讀本書籍的人數(shù)所在扇形的圓心角度數(shù)是 ;
(4)若該校有名學生,估計該校在這次活動中閱讀書籍的數(shù)量不低于本的學生有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】九(1)班同學為了解2011年某小區(qū)家庭月均用水情況,隨機調(diào)查了該小區(qū)部分家庭,并將調(diào)查數(shù)據(jù)進行如下整理.請解答以下問題:
(1)把上面的頻數(shù)分布表和頻數(shù)分布直方圖補充完整;
(2)若該小區(qū)用水量不超過15t的家庭占被調(diào)查家庭總數(shù)的百分比;
(3)若該小區(qū)有1000戶家庭,根據(jù)調(diào)查數(shù)據(jù)估計,該小區(qū)月均用水量超過20t的家庭大約有多少戶?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中將向下平移3個單位長度得到直線,直線與x軸交于點C;直線:與x軸、y軸交于A、B兩點,且與直線交于點D.
填空:點A的坐標為______,點B的坐標為______;
直線的表達式為______;
在直線上是否存在點E,使?若存在,則求出點E的坐標;若不存在,請說明理由.
如圖2,點P為線段AD上一點不含端點,連接CP,一動點H從C出發(fā),沿線段CP以每秒1個單位的速度運動到點P,再沿線段PD以每秒個單位的速度運動到點D后停止,求點H在整個運動過程中所用時間最少時點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ABC=90°,以AB為直徑作半圓⊙O交AC與點D,點E為BC的中點,連接DE.
(1)求證:DE是半圓⊙O的切線.
(2)若∠BAC=30°,DE=2,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】第19屆亞運會將于2022年在杭州舉行,“絲綢細節(jié)”助力杭州打動世界.杭州絲綢公司為亞運會設計手工禮品,投入元錢,若以2條領帶和1條絲巾為一份禮品,則剛好可制作600份禮品;若以1條領帶和3條絲巾為一份禮品,則剛好可制作400份禮品.
(1)若萬元,求領帶及絲巾的制作成本是多少?
(2)若用元錢全部用于制作領帶,總共可以制作幾條?
(3)若用元錢恰好能制作300份其他的禮品,可以選擇條領帶和條絲巾作為一份禮品(兩種都要有),請求出所有可能的、的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成下列證明過程,并在括號內(nèi)填上依據(jù).
如圖,點E在AB上,點F在CD上,∠1=∠2,∠B=∠C,求證AB∥CD.
證明:∵∠1=∠2(已知),∠1=∠4( ),
∴∠2= (等量代換),
∴ ∥BF( ),
∴∠3=∠ ( ).
又∵∠B=∠C(已知),
∴∠3=∠B( ),
∴AB∥CD( ).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com