如圖,拋物線y=ax2+bx+c(a≠0)的圖象過點(diǎn)M(﹣2,),頂點(diǎn)坐標(biāo)為N(﹣1,),且與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn).
(1)求拋物線的解析式;
(2)點(diǎn)P為拋物線對(duì)稱軸上的動(dòng)點(diǎn),當(dāng)△PBC為等腰三角形時(shí),求點(diǎn)P的坐標(biāo);
(3)在直線AC上是否存在一點(diǎn)Q,使△QBM的周長最。咳舸嬖,求出Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
解:(1)由拋物線頂點(diǎn)坐標(biāo)為N(﹣1,),可設(shè)其解析式為y=a(x+1)2+,
將M(﹣2,)代入,得=a(﹣2+1)2+,
解得a=﹣,
故所求拋物線的解析式為y=﹣x2﹣x+;
(2)∵y=﹣x2﹣x+,
∴x=0時(shí),y=,
∴C(0,).
y=0時(shí),﹣x2﹣x+=0,
解得x=1或x=﹣3,
∴A(1,0),B(﹣3,0),
∴BC==2.
設(shè)P(﹣1,m),顯然PB≠PC,所以
當(dāng)CP=CB時(shí),有CP==2,解得m=±;
當(dāng)BP=BC時(shí),有BP==2,解得m=±2.
綜上,當(dāng)△PBC為等腰三角形時(shí),點(diǎn)P的坐標(biāo)為(﹣1,+),(﹣1,﹣),(﹣1,2),(﹣1,﹣2);
(3)由(2)知BC=2,AC=2,AB=4,
所以BC2+AC2=AB2,即BC⊥AC.
連結(jié)BC并延長至B′,使B′C=BC,連結(jié)B′M,交直線AC于點(diǎn)Q,
∵B、B′關(guān)于直線AC對(duì)稱,
∴QB=QB′,
∴QB+QM=QB′+QM=MB′,
又BM=2,所以此時(shí)△QBM的周長最小.
由B(﹣3,0),C(0,),易得B′(3,2).
設(shè)直線MB′的解析式為y=kx+n,
將M(﹣2,),B′(3,2)代入,
得,解得,
即直線MB′的解析式為y=x+.
同理可求得直線AC的解析式為y=﹣x+.
由,解得,即Q(﹣,).
所以在直線AC上存在一點(diǎn)Q(﹣,),使△QBM的周長最。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
下列說法正確的是( 。
| A. | 多邊形的外角和與邊數(shù)有關(guān) |
| B. | 平行四邊形既是軸對(duì)稱圖形,又是中心對(duì)稱圖形 |
| C. | 當(dāng)兩圓相切時(shí),圓心距等于兩圓的半徑之和 |
| D. | 三角形的任何兩邊的和大于第三邊 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,AB、CD為兩個(gè)建筑物,建筑物AB的高度為60米,從建筑物AB的頂點(diǎn)A點(diǎn)測得建筑物CD的頂點(diǎn)C點(diǎn)的俯角∠EAC為30°,測得建筑物CD的底部D點(diǎn)的俯角∠EAD為45°.
(1)求兩建筑物底部之間水平距離BD的長度;
(2)求建筑物CD的高度(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
四川省“單獨(dú)兩孩”政策于2014年3月20日正式開始實(shí)施,該政策的實(shí)施可能給我們的生活帶來一些變化,綿陽市人口計(jì)生部門抽樣調(diào)查了部分市民(每個(gè)參與調(diào)查的市民必須且只能在以下6種變化中選擇一項(xiàng)),并將調(diào)查結(jié)果繪制成統(tǒng)計(jì)圖:
種類 A B C D E F
變化 有利于延緩社會(huì)老齡化現(xiàn)象 導(dǎo)致人口暴增 提升家庭抗風(fēng)險(xiǎn)能力 增大社會(huì)基本公共服務(wù)的壓力 環(huán)節(jié)男女比例不平衡現(xiàn)象 促進(jìn)人口與社會(huì)、資源、環(huán)境的協(xié)調(diào)可持續(xù)發(fā)展
根據(jù)統(tǒng)計(jì)圖,回答下列問題:
(1)參與調(diào)查的市民一共有 人;
(2)參與調(diào)查的市民中選擇C的人數(shù)是 人;
(3)∠α= ;
(4)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知一次函數(shù)y=x+1的圖象與反比例函數(shù)y=的圖象相交,其中有一個(gè)交點(diǎn)的橫坐標(biāo)是2,則k的值為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某籃球隊(duì)12名隊(duì)員的年齡如表:
年齡(歲) | 18 | 19 | 20 | 21 |
人數(shù) | 5 | 4 | 1 | 2 |
則這12名隊(duì)員年齡的眾數(shù)和平均數(shù)分別是( 。
| A. | 18,19 | B. | 19,19 | C. | 18,19.5 | D. | 19,19.5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,E,F(xiàn)分別是等邊三角形ABC的邊AB,AC上的點(diǎn),且BE=AF,CE、BF交于點(diǎn)P
(1)求證:CE=BF;
(2)求∠BPC的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com