【題目】如圖,△ABC中,∠C=90°,AB=5cm,BC=3cm,,若動點P從點C開始,按C→A→B→C的路徑運動,且速度為每秒1cm,設(shè)出發(fā)的時間為t秒.
(1)出發(fā)2秒后,求△ABP的周長.
(2)問t為何值時,△BCP為等腰三角形?
(3)另有一點Q,從點C開始,按C→B→A→C的路徑運動,且速度為每秒2cm,若P、Q兩點同時出發(fā),當P、Q中有一點到達終點時,另一點也停止運動.當t為何值時,直線PQ把△ABC的周長分成相等的兩部分?
【答案】(1) 7+;(2) t為3s、5.4s、6s、6.5s;(3) t為2或6秒.
【解析】
(1)根據(jù)速度為每秒1cm,求出出發(fā)2秒后CP的長,然后就知AP的長,利用勾股定理求得PB的長,最后即可求得周長.
(2)因為AB與CB,由勾股定理得AC=4 因為AB為5cm,所以必須使AC=CB,或CB=AB,所以必須使AC或AB等于3,有兩種情況,△BCP為等腰三角形.
(3)分類討論:當P點在AC上,Q在AB上,則PC=t,BQ=2t-3,t+2t-3=6;當P點在AB上,Q在AC上,則AC=t-4,AQ=2t-8,t-4+2t-8=6.
解:(1)如圖1,由∠C=90°,AB=5cm,BC=3cm,
∴AC=4,動點P從點C開始,按C→A→B→C的路徑運動,且速度為每秒1cm,
∴出發(fā)2秒后,則CP=2,
∵∠C=90°,
∴PB==,
∴△ABP的周長為:AP+PB+AB=2+5+=7+.
(2)①如圖2,若P在邊AC上時,BC=CP=3cm,
此時用的時間為3s,△BCP為等腰三角形;
②若P在AB邊上時,有三種情況:
i)如圖3,若使BP=CB=3cm,此時AP=2cm,P運動的路程為2+4=6cm,
所以用的時間為6s,△BCP為等腰三角形;
ii)如圖4,若CP=BC=3cm,過C作斜邊AB的高,根據(jù)面積法求得高為2.4cm,
作CD⊥AB于點D,
在Rt△PCD中,PD==1.8,
所以BP=2PD=3.6cm,
所以P運動的路程為9-3.6=5.4cm,
則用的時間為5.4s,△BCP為等腰三角形;
ⅲ)如圖5,若BP=CP,此時P應(yīng)該為斜邊AB的中點,P運動的路程為4+2.5=6.5cm
則所用的時間為6.5s,△BCP為等腰三角形;
綜上所述,當t為3s、5.4s、6s、6.5s時,△BCP為等腰三角形
(3)如圖6,當P點在AC上,Q在AB上,則PC=t,BQ=2t-3,
∵直線PQ把△ABC的周長分成相等的兩部分,
∴t+2t-3=3,
∴t=2;
如圖7,當P點在AB上,Q在AC上,則AP=t-4,AQ=2t-8,
∵直線PQ把△ABC的周長分成相等的兩部分,
∴t-4+2t-8=6,
∴t=6,
∴當t為2或6秒時,直線PQ把△ABC的周長分成相等的兩部分.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將正整數(shù)至按照一定規(guī)律排成下表:
…… |
記表示第行第個數(shù),如表示第行第個數(shù)是.
(1)直接寫出_______________,_______________;
(2)①如果,那么_________________,________;②用,表示__________;
(3)將表格中的個陰影格子看成一個整體并平移,所覆蓋的個數(shù)之和能否等于.若能,求出這個數(shù)中的最小數(shù),若不能說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用若干等長的木棒按如圖的方式擺放.
填寫下表:
圖形編號 | ||||||
木棒根數(shù) | 7 | 12 | ______ | ______ | ______ |
搭第n個圖形需要多少根木棒?
搭第幾個圖形需要2017根木棒?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列兩個等式:,,給出定義如下:我們稱使等式成立的一對有理數(shù)為“理想有理數(shù)對”,記為,如:數(shù)對、都是“理想有理數(shù)對”.
(1)數(shù)對、中是“理想有理數(shù)對”的是______;
(2)若是“理想有理數(shù)對”,求a的值;
(3)若是“理想有理數(shù)對”,則______“理想有理數(shù)對”(填“是”、“不是”或“不確定”);
(4)請再寫出一對符合條件的“理想有理數(shù)對”.(不能與題目中已有的數(shù)對重復(fù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象經(jīng)過A(2,0),B(0,-6)兩點.
(1)求這個二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)的對稱軸與x軸交于點C,連接BA,BC,求△ABC的面積.
(3)在x軸上是否存在一點P,使△ABP為等腰三角形,若存在,求出P的坐標,若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下面給出的數(shù)軸,解答下面的問題:
(1)請你根據(jù)圖中A、B兩點的位置,分別寫出它們所表示的有理數(shù)A: ,B: ;
(2)觀察數(shù)軸,與點A的距離為4的點表示的數(shù)是: ;
(3)若將數(shù)軸折疊,使得A點與﹣3表示的點重合,則B點與數(shù) 表示的點重合.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,且拋物線經(jīng)過A(1,0),C(0,3)兩點,與x軸交于點B.
(1)若直線y=mx+n經(jīng)過B、C兩點,求直線BC和拋物線的解析式;
(2)在拋物線的對稱軸x=﹣1上找一點M,使點M到點A的距離與到點C的距離之和最小,求出點M的坐標;
(3)設(shè)點P為拋物線的對稱軸x=﹣1上的一個動點,求使△BPC為直角三角形的點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線SN與直線WE相交于點O,射線ON表示正北方向,射線OE表示正東方向.已知射線OB的方向是南偏東56°,射線 OC在∠NOE內(nèi),且∠NOC與∠BOS互余,射線OA平分∠BON,圖中與∠COA互余的角是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】、兩地相距,甲、乙兩車分別從、兩地同時出發(fā),相向而行.已知甲車速度為,乙車速度為,經(jīng)過后兩車相距,則的值是( )
A.2B.10C.2或10D.2或2.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com