【題目】目前,步行已成為人們最喜愛的健身方法之一,通過手機可以計算行走的步數(shù)與相應(yīng)的能量消耗.對比手機數(shù)據(jù)發(fā)現(xiàn):小瓊步行13500步與小剛步行9000步消耗的能量相同,若每消耗1千卡能量小瓊行走的步數(shù)比小剛多15步,求小剛每消耗1千卡能量需要行走多少步?
【答案】解:設(shè)小剛每消耗1千卡能量需要行走x步. 根據(jù)題意,得 ,
解得 x=30,
經(jīng)檢驗,x=30是原方程的根.
答:小剛每消耗1千卡能量需要行走30步.
【解析】設(shè)小剛每消耗1千卡能量需要行走x步,則小瓊每消耗1千卡能量需要行走(x+15)步,根據(jù)數(shù)量關(guān)系消耗能量千卡數(shù)=行走步數(shù)÷每消耗1千卡能量需要行走步數(shù)結(jié)合小瓊步行123500步與小剛步行9 000步消耗的能量相同,即可得出關(guān)于x的分式方程,解之后經(jīng)檢驗即可得出結(jié)論.
【考點精析】通過靈活運用分式方程的應(yīng)用,掌握列分式方程解應(yīng)用題的步驟:審題、設(shè)未知數(shù)、找相等關(guān)系列方程、解方程并驗根、寫出答案(要有單位)即可以解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀以下兩小題后作出相應(yīng)的解答:
(1)“同位角相等,兩直線平行”,“兩直線平行,同位角相等”,這兩個命題的題設(shè)和結(jié)論在命題中的位置恰好對凋,我們把其中一命題叫做另一個命題的逆命題,請你寫出命題“角平分線上的點到角兩邊的距離相等“的逆命題,并指出逆命題的題設(shè)和結(jié)論;
(2)根據(jù)以下語句作出圖形,并寫出該命題的文字敘述.
已知:過直線AB上一點O任作射線OC,OM、ON分別平分∠AOC、∠BOC,則OM⊥ON.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m, CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
(3)拓展與應(yīng)用:如圖(3),D、E是D、A、E三點所在直線m上的兩動點(D、A、E三點互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)若多邊形的內(nèi)角和為 2340°,求此多邊形的邊數(shù);
(2)一個 n 邊形的每個外角都相等,如果它的內(nèi)角與相鄰?fù)饨堑亩葦?shù)之比為 13: 2,求 n 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC 中,邊 AC,BC 的垂直平分線的交點 O 落在邊 AB 上,則△ABC 的形狀是( )
A. 鈍角三角形 B. 直角三角形 C. 銳角三角形 D. 任意三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD 相交于點O,∠AOD=3∠BOD+20°.
(1)求∠BOD的度數(shù);
(2)以O為端點引射線OE,OF ,射線OE平分∠BOD,且∠EOF= 90°,求∠BOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系上,△ABC的頂點A和C分別在x軸、y軸的正半軸上,且AB∥y軸,點B(1,3),將△ABC以點B為旋轉(zhuǎn)中心順時針方向旋轉(zhuǎn)90°得到△DBE,恰好有一反比例函數(shù)y= 圖象恰好過點D,則k的值為( )
A.6
B.﹣6
C.9
D.﹣9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知某電腦公司有A型、B型、C型三種型號的電腦,其價格分別為A型每臺6 000元,B型每臺4 000元,C型每臺2 500元,我市東坡中學(xué)計劃將100 500元錢全部用于該電腦公司購進其中兩種不同型號的電腦共36臺,請你設(shè)計出幾種不同的購買方案供該校選擇,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知等邊△ABC的邊長為a,P是△ABC內(nèi)一點,PD∥AB,PE∥BC,PF∥AC,點D、E、F分別在BC、AC、AB上,猜想:PD+PE+PF等于多少,并證明你的猜想.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com