分析 (1)利用平行四邊形的對(duì)邊相互平行和平行線的性質(zhì)得到∠ADE=∠DEC,證出DE=BC,證明三角形全等即可;
(2)證出∠AEB=∠AEF,由AAS證明△BAE≌△FAE,即可得出結(jié)論.
解答 證明:(1)∵四邊形ABCD是平行四邊形,
∴AD∥BC,AD=BC,∠B+∠C=180°,
∴∠ADE=∠DEC.∠AEB=∠DAE,
又∵DA=DE,
∴DE=BC,
在△DAF和△EDC中,$\left\{\begin{array}{l}{∠DAF=∠CDE}&{\;}\\{AD=DE}&{\;}\\{∠ADE=∠DEC}&{\;}\end{array}\right.$,
∴△DAF≌△EDC(ASA);
(2)∵△DAF≌△EDC,
∴∠AFD=∠C,
∵DE=AD,
∴∠AEF=∠DAE,
∴∠AEB=∠AEF,
∵∠AFE+∠AFD=180°,
∴∠B=∠AFE,
在△BAE和△FAE中,$\left\{\begin{array}{l}{∠B=∠AFE}&{\;}\\{∠AEB=∠AEF}&{\;}\\{AE=AE}&{\;}\end{array}\right.$,
∴△BAE≌△FAE(AAS),
∴∠BAE=∠FAE,
即AE平分∠BAF.
點(diǎn)評(píng) 本題考查了平行四邊形的性質(zhì)、全等三角形的判定與性質(zhì)、等腰三角形的性質(zhì).熟練掌握平行四邊形的性質(zhì),證明三角形全等是解決問題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | S1=S2 | B. | S1>S2 | C. | S1<S2 | D. | 無法確定 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com