【題目】已知二次函數(shù)y=ax+bx-4(a,b是常數(shù).且a0)的圖象過點(3,-1).
(1)試判斷點(2,2-2a)是否也在該函數(shù)的圖象上,并說明理由.
(2)若該二次函數(shù)的圖象與x軸只有一個交點,求該函數(shù)表達式.
(3)已知二次函數(shù)的圖像過(,)和(,)兩點,且當<時,始終都有>,求a的取值范圍.
【答案】(1)不在;(2);;(3)
【解析】
(1)將點代入函數(shù)解析式,求出a和b的等式,將函數(shù)解析式改寫成只含有a的形式,再將點代入驗證即可;
(2)令,得到一個一元二次方程,由題意此方程只有一個實數(shù)根,由根的判別式即可求出a的值,從而可得函數(shù)表達式;
(3)根據(jù)函數(shù)解析式求出其對稱軸,再根據(jù)函數(shù)圖象的增減性判斷即可.
(1)二次函數(shù)圖像過點
代入得,
,代入得
將代入得,得,不成立,所以點不在該函數(shù)圖像上;
(2)由(1)知,
與x軸只有一個交點
只有一個實數(shù)根
,或
當時,,所以表達式為:
當時,,所以表達式為:;
(3)
對稱軸為
當時,函數(shù)圖象如下:
若要滿足時,恒大于,則、均在對稱軸左側
,
當時,函數(shù)圖象如下:
,此時,必小于
綜上,所求的a的取值范圍是:.
科目:初中數(shù)學 來源: 題型:
【題目】某商場將進貨價為30元的臺燈以40元的價格售出,平均每月能售出600個,經調查表明,這種臺燈的售價每上漲1元,其銷量就減少10個,市場規(guī)定此臺燈售價不得超過60元,為了實現(xiàn)銷售這種臺燈平均每月10000元的銷售利潤,售價應定為多少元?這時售出臺燈多少個?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,∠C=Rt∠,AC=3,BC=4,以點C為圓心,CA為半徑的圓與AB、BC分別交于點E、D,則AE的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程有兩個實數(shù)根x1,x2.
(1)求實數(shù)k的取值范圍;
(2)是否存在實數(shù)k使得成立?若存在,請求出k的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y=mx2﹣2mx﹣3(m≠0)與x軸交于A(3,0),B兩點.
(1)求拋物線的表達式及點B的坐標;
(2)當﹣2<x<3時的函數(shù)圖象記為G,求此時函數(shù)y的取值范圍;
(3)在(2)的條件下,將圖象G在x軸上方的部分沿x軸翻折,圖象G的其余部分保持不變,得到一個新圖象M.若經過點C(4.2)的直線y=kx+b(k≠0)與圖象M在第三象限內有兩個公共點,結合圖象求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了解學生“第二課堂“活動的選修情況,對報名參加A.跆拳道,B.聲樂,C.足球,D.古典舞這四項選修活動的學生(每人必選且只能選修一項)進行抽樣調查.并根據(jù)收集的數(shù)據(jù)繪制了圖①和圖②兩幅不完整的統(tǒng)計圖.
根據(jù)圖中提供的信息,解答下列問題:
(1)本次調查的學生共有 人;在扇形統(tǒng)計圖中,B所對應的扇形的圓心角的度數(shù)是 ;
(2)將條形統(tǒng)計圖補充完整;
(3)在被調查選修古典舞的學生中有4名團員,其中有1名男生和3名女生,學校想從這4人中任選2人進行古典舞表演.請用列表或畫樹狀圖的方法求被選中的2人恰好是1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】第二十四屆冬季奧林匹克運動會將于2022年在北京市和張家口市舉行.為了調查學生對冬奧知識的了解情況,從甲、乙兩校各隨機抽取20名學生進行了相關知識測試,獲得了他們的成績(百分制),并對數(shù)據(jù)(成績)進行了整理、描述和分析.下面給出了部分信息.
a.甲校20名學生成績的頻數(shù)分布表和頻數(shù)分布直方圖如圖:
甲校學生樣本成績頻數(shù)分布表(表1)
成績m(分) | 頻數(shù)(人數(shù)) | 頻率 |
50≤m<60 | a | 0.05 |
60≤m<70 | b | c |
70≤m<80 | 3 | 0.15 |
80≤m<90 | 8 | 0.40 |
90≤m<100 | 6 | 0.30 |
合計 | 20 | 1.0 |
b.甲校成績在80≤m<90的這一組的具體成績是:
87 88 88 88 89 89 89 89
c.甲、乙兩校成績的平均分、中位數(shù)、眾數(shù)、方差如表所示(表2):
學校 | 平均分 | 中位數(shù) | 眾數(shù) | 方差 |
甲 | 84 | n | 89 | 129.7 |
乙 | 84.2 | 85 | 85 | 138.6 |
根據(jù)以如圖表提供的信息,解答下列問題:
(1)表1中a= ;表2中的中位數(shù)n= ;
(2)補全圖1甲校學生樣本成績頻數(shù)分布直方圖;
(3)在此次測試中,某學生的成績是87分,在他所屬學校排在前10名,由表中數(shù)據(jù)可知該學生是 校的學生(填“甲”或“乙”),理由是 ;
(4)假設甲校200名學生都參加此次測試,若成績80分及以上為優(yōu)秀,估計成績優(yōu)秀的學生人數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,點D是等腰直角△ABC的重心,其中∠ACB=90°,將線段CD繞點C逆時針旋轉90°得到線段CE,連結DE,若△ABC的周長為6,則△DCE的周長為( 。
A. 2 B. 2 C. 4 D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了弘揚中華優(yōu)秀傳統(tǒng)文化,用好漢字,某中學開展了一次“古詩詞”知識競賽,賽程共分“預賽、復賽和決賽”三個階段,預賽由各班舉行,全員參加,按統(tǒng)一標準評分,統(tǒng)計成績后繪制成如圖1和圖2所示的兩幅不完整“預賽成績條形統(tǒng)計圖”和“預賽成績扇形統(tǒng)計圖”,預賽前10名選手參加復賽,成績見“前10名選手成績統(tǒng)計表”(采用百分制記分,得分都為60分以上的整數(shù)).
前10名選手成績統(tǒng)計表
序號 | ① | ② | ③ | ④ | ⑤ | ⑥ | ⑦ | ⑧ | ⑨ | ⑩ |
預賽成績(分) | 100 | 92 | 95 | 98 | 94 | 100 | 93 | 96 | 95 | 96 |
復賽成績(分) | 90 | 80 | 85 | 90 | 80 | 88 | 85 | 90 | 86 | 89 |
總成績(分) | 94 | 84.8 | 89 | 85.6 | 92.8 | 88.2 | 89.6 | 91.8 |
(1)求該中學學生的總人數(shù),并將圖1補充完整;
(2)在圖2中,求“90.5~100.5分數(shù)段人數(shù)”的圓心角度數(shù);
(3)預賽前10名選手參加復賽,成績見“前10名選手成績統(tǒng)計表”,若按預賽成績占40%,復賽成績占60%的比例計算總成績,并從中選出3人參加決賽,你認為選哪幾號選手去參加決賽,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com