【題目】如圖,已知,點(diǎn)在上,與交于點(diǎn).
(1)若,,求的度數(shù);
(2),,求與的周長(zhǎng)之和.
【答案】(1);(2)與的周長(zhǎng)之和
【解析】
(1)根據(jù)全等三角形的性質(zhì)得到∠ABC=∠DBE,計(jì)算即可;
(2)根據(jù)全等三角形的性質(zhì)得到BE=BC=4.5cm,DE=AC=6cm,根據(jù)三角形的周長(zhǎng)公式計(jì)算.
(1)∵△ABC≌△DBE,
∴∠ABC=∠DBE,
∴∠ABC∠DBC=∠DBE∠DBC,即∠ABD=∠CBE=(160°30°)=65°;
(2)∵△ABC≌△DBE,
∴BE=BC=4.5cm,DE=AC=6cm,
∴△DCP與△BPE的周長(zhǎng)之和=DC+DP+PC+BP+PE+BE=(DP+PE)+(BP+PC)+DC+BE=18cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知邊長(zhǎng)為5的菱形ABCD中,對(duì)角線AC長(zhǎng)為6,點(diǎn)E在對(duì)角線BD上且tan∠EAC=,則BE的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,使ΔABC≌ΔADC成立的條件是( )
A.AB=AD,∠B=∠DB.AB=AD,∠ACB=ACD
C.BC=DC,∠BAC=∠DACD.AB=AD,∠BAC=∠DAC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=12cm,BC=9cm,點(diǎn)D為AB的中點(diǎn).
(1)如果點(diǎn)P在線段BC上以3厘米/秒的速度由B向C點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).
①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,當(dāng)經(jīng)過1秒時(shí),△BPD與△CQP是否全等,請(qǐng)判斷并說明理由;
②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD≌△CPQ?
(2)若點(diǎn)Q以②的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿△ABC的三邊運(yùn)動(dòng),求經(jīng)過多長(zhǎng)時(shí)間,點(diǎn)P與點(diǎn)Q第一次在△ABC的哪條邊上會(huì)相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點(diǎn)B,與直線l的另一個(gè)交點(diǎn)為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點(diǎn)D在拋物線上,DE∥y軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長(zhǎng)為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若△A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,動(dòng)點(diǎn)E從A出發(fā),沿A→B→C方向運(yùn)動(dòng),當(dāng)點(diǎn)E到達(dá)點(diǎn)C時(shí)停止運(yùn)動(dòng),過點(diǎn)E作EF⊥AE交CD于點(diǎn)F,設(shè)點(diǎn)E運(yùn)動(dòng)路程為x,CF=y,如圖2所表示的是y與x的函數(shù)關(guān)系的大致圖象,給出下列結(jié)論:①a=3;②當(dāng)CF=時(shí),點(diǎn)E的運(yùn)動(dòng)路程為或或,則下列判斷正確的是( )
A. ①②都對(duì) B. ①②都錯(cuò) C. ①對(duì)②錯(cuò) D. ①錯(cuò)②對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D是AC上一點(diǎn),E是BD上一點(diǎn),∠A=∠CBD=∠DCE.
(1)求證:△ABC∽△CDE;
(2)若BD=3DE,試求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們用f(x)表示不大于x的最大整數(shù),例如:f(2.3)=2,f(4)=4,f(﹣1.5)=﹣2;用g(y)表示不小于y的最小整數(shù).例如:g(2.5)=3,g(5)=5,g(﹣3.5)=﹣3.解決下列問題:
(1)根據(jù)以上運(yùn)算規(guī)律:f(﹣5.4)=______,g(4.5)=______.
(2)若f(x)=3,則x的取值范圍是_______;若g(y)=﹣2,則y的取值范圍是______.
(3)已知x,y滿足,求x,y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長(zhǎng)是4,點(diǎn)E是AB邊上一動(dòng)點(diǎn),連接CE,過點(diǎn)B作BG⊥CE于點(diǎn)G,點(diǎn)P是AB邊上另一動(dòng)點(diǎn),則PD+PG的最小值為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com