【題目】二次函數(shù)yax2bxca0圖象如圖所示,下列結(jié)論:①abc0;②2ab0;③當(dāng)m1時(shí),abam2bm;④abc0;⑤若,且,則,其中正確的有( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
【答案】C
【解析】
根據(jù)拋物線開口方向得a<0,由拋物線對(duì)稱軸為直線,即2a+b=0,由拋物線與y軸的交點(diǎn)位置得到c>0,所以abc<0;根據(jù)二次函數(shù)的性質(zhì)得當(dāng)x=1時(shí),函數(shù)有最大值a+b+c,則當(dāng)m≠1時(shí),a+b+c>am2+bm+c,即a+b>am2+bm;根據(jù)拋物線的對(duì)稱性得到拋物線與x軸的另一個(gè)交點(diǎn)在(-1,0)的右側(cè),則當(dāng)x=-1時(shí),y<0,所以a-b+c<0;把ax12+bx1=ax22+bx2先移項(xiàng),再分解因式得到(x1-x2)[a(x1+x2)+b]=0,而x1≠x2,則a(x1+x2)+b=0,即,然后把b=-2a代入計(jì)算得到x1+x2=2.
解:∵拋物線開口向下,
∴a<0,
∵拋物線對(duì)稱軸為直線,
∴b=-2a>0,即2a+b=0,所以②正確;
∵拋物線與y軸的交點(diǎn)在x軸上方,
∴c>0,
∴abc<0,所以①錯(cuò)誤;
∵拋物線對(duì)稱軸為直線x=1,
∴函數(shù)的最大值為a+b+c,
∴當(dāng)m≠1時(shí),a+b+c>am2+bm+c,即a+b>am2+bm,所以③正確;
∵拋物線與x軸的一個(gè)交點(diǎn)在(3,0)的左側(cè),而對(duì)稱軸為直線x=1,
∴拋物線與x軸的另一個(gè)交點(diǎn)在(-1,0)的右側(cè)
∴當(dāng)x=-1時(shí),y<0,
∴a-b+c<0,所以④錯(cuò)誤;
∵ax12+bx1=ax22+bx2,
∴ax12+bx1-ax22-bx2=0,
∴a(x1+x2)(x1-x2)+b(x1-x2)=0,
∴(x1-x2)[a(x1+x2)+b]=0,
而x1≠x2,
∴a(x1+x2)+b=0,即
∵b=-2a,
∴x1+x2=2,所以⑤正確.
綜上所述,正確的有②③⑤.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】山地自行車越來越受到中學(xué)生的喜愛,各種品牌相繼投放市場(chǎng),某車行經(jīng)營(yíng)的A型車去年銷售總額為5萬(wàn)元,今年每輛銷售價(jià)比去年降低400元,若賣出的數(shù)量相同,銷售總額將比去年減少20%.
(1)今年A型車每輛售價(jià)多少元?(用列方程的方法解答)
(2)該車行計(jì)劃新進(jìn)一批A型車和新款B型車共60輛,且B型車的進(jìn)貨數(shù)量不超過A型車數(shù)量的兩倍,應(yīng)如何進(jìn)貨才能使這批車獲利最多?
A,B兩種型號(hào)車的進(jìn)貨和銷售價(jià)格如下表:
A型車 | B型車 | |
進(jìn)貨價(jià)格(元) | 1100 | 1400 |
銷售價(jià)格(元) | 今年的銷售價(jià)格 | 2000 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(操作觀察)任意一張三角形紙片有3個(gè)頂點(diǎn)。
第1次在它的內(nèi)部增畫1個(gè)點(diǎn),此時(shí)三角形紙片內(nèi)部共有1個(gè)點(diǎn);
第2次在它的內(nèi)部繼續(xù)增畫2個(gè)點(diǎn),此時(shí)三角形紙片內(nèi)部共有1+2=3個(gè)點(diǎn);
第3次在它的內(nèi)部繼續(xù)增畫3個(gè)點(diǎn),此時(shí)三角形紙片內(nèi)部共有1+2+3=6個(gè)點(diǎn);
……
第次在它的內(nèi)部繼續(xù)增畫個(gè)點(diǎn),此時(shí)三角形紙片內(nèi)部共有個(gè)點(diǎn)。
(動(dòng)手實(shí)踐)
第次畫點(diǎn)后,在三角形紙片內(nèi)部共有個(gè)點(diǎn),以個(gè)點(diǎn)為頂點(diǎn),把三角形紙片剪成若干個(gè)小三角形紙片,設(shè)最多可以剪得個(gè)這樣的小三角形。
(思考解答)
(1)第次畫點(diǎn)后,__________________;(用含有的代數(shù)式表示);
(2)第1次畫點(diǎn)后,如圖1,以4個(gè)點(diǎn)為頂點(diǎn),將原三角形紙片剪成若干個(gè)小三角形,最多可以剪得3個(gè)這樣的小三角形,所以;第2次畫點(diǎn)后,如圖2,以6個(gè)點(diǎn)為頂點(diǎn),最多可以剪得7個(gè)這樣的小三角形,所以;第3次畫點(diǎn)后,以9個(gè)點(diǎn)為頂點(diǎn),可得____________________;
(3)第次畫點(diǎn)后,可得______________;(用含有的代數(shù)式表示);
(4)第次畫點(diǎn)后,可得個(gè)小三角形,第次畫點(diǎn)后,可得個(gè)小三角形,則________________________。(用含有的代數(shù)式表示)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下表,從左到右在每個(gè)小格子中都填入一個(gè)整數(shù),使得其中任意三個(gè)相鄰格子中所填整數(shù)之和都相等,則第2019個(gè)格子中的數(shù)為_________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】古希臘著名的畢達(dá)哥拉斯學(xué)派把1,3,6,10…這樣的數(shù)稱為“三角形數(shù)”,而把1,4,9,16…這樣的數(shù)稱為“正方形數(shù)”.從圖中可以發(fā)現(xiàn),任何一個(gè)大于1的“正方形數(shù)”都可以看作兩個(gè)相鄰“三角形數(shù)”之和.下列等式中,符合這一規(guī)律的是( )
A.13=3+10B.25=9+16C.36=15+21D.49=18+31
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A9m,0、Bm,0m0,以AB為直徑的⊙M交y軸正半軸于點(diǎn)C,CD是⊙M的切線,交x軸正半軸于點(diǎn)D,過A作AECD于E,交⊙于F.
(1)求C的坐標(biāo);(用含m的式子表示)
(2)①請(qǐng)證明:EFOB;②用含m的式子表示AFC的周長(zhǎng);
(3)若,,分別表示的面積,記,對(duì)于經(jīng)過原點(diǎn)的二次函數(shù),當(dāng)時(shí),函數(shù)y的最大值為a,求此二次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,于點(diǎn),,.點(diǎn)從點(diǎn)出發(fā),在線段上以每秒的速度向點(diǎn)勻速運(yùn)動(dòng);與此同時(shí),垂直于的直線從底邊出發(fā),以每秒的速度沿方向勻速平移,分別交、、于點(diǎn)、、,當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),點(diǎn)與直線同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒().
(1)當(dāng)時(shí),連接、,求證:四邊形為菱形;
(2)當(dāng)時(shí),求的面積;
(3)是否存在某一時(shí)刻,使為以點(diǎn)或為直角頂點(diǎn)的直角三角形?若存在,請(qǐng)求出此時(shí)刻的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,矩形ABCD的面積為10cm2,它的兩條對(duì)角線交于點(diǎn)O1,以AB、AO1為鄰邊作平行四邊形ABC1O1,平行四邊形ABC1O1的對(duì)角線交于點(diǎn)O2,同樣以AB、AO2為鄰邊作平行四邊形ABC2O2,…,依此類推,則平行四邊形ABC5O5的面積為( )
A. 1cm2B. 2cm2C. cm2D. cm2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com