【題目】已知二次函數(shù) 的圖象如圖所示,有以下結(jié)論:① ;② ;③ ;④ ;⑤ 其中所有正確結(jié)論的序號是( )

A.①②
B.①③④
C.①②③⑤
D.①②③④⑤

【答案】C
【解析】①當(dāng)x=1時,y=a+b+c<0,故①正確,

②當(dāng)x=-1時,y=a-b+c>2,故②正確,

③由拋物線的開口向下知a<0,與y軸的交點(diǎn)為在y軸的正半軸上,

∴c>0,對稱軸為x=- =-1,得2a=b,

∴a、b同號,即b<0,

∴abc>0,故③正確,

④∵對稱軸為x=- =-1,

∴點(diǎn)(0,2)的對稱點(diǎn)為(-2,2),

∴當(dāng)x=-2時,y=4a-2b+c=2,故④錯誤,

⑤∵x=-1時,a-b+c>1,又- =-1,即b=2a,

∴c-a>1,故⑤正確.

故答案為:C.

先分別根據(jù)x=1、x=-1、x=-2的值及對稱軸,確定對應(yīng)的函數(shù)值,即可對①、②、④作出判斷;再根據(jù)二次函數(shù)的性質(zhì)對③作出判斷;然后結(jié)合對稱軸及x=-1得出a-b+c>1和b=2a,即可對⑤作出判斷,從而得出正確選項。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=a(x﹣m)2﹣a(x﹣m)(a,m為常數(shù),且a≠0).
(1)求證:不論a與m為何值,該函數(shù)的圖象與x軸總有兩個公共點(diǎn);
(2)設(shè)該函數(shù)的圖象與x軸的兩個交點(diǎn)為A(x1 , 0),B(x2 , 0),且x12+x22=25,求m的值;
(3)設(shè)該函數(shù)的圖象的頂點(diǎn)為C,與x軸交于A,B兩點(diǎn),且△ABC的面積為1,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用長為 的鋁合金條制成“日”字形窗框,若窗框的寬為 ,窗戶的透光面積為 (鋁合金條的寬度不計).

(Ⅰ)求出 的函數(shù)關(guān)系式;
(Ⅱ)如何安排窗框的長和寬,才能使得窗戶的透光面積最大?并求出此時的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算: .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=6cm,BC=12cm,∠B=90°.點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B以1cm/s的速度移動,點(diǎn)Q從點(diǎn)B開始沿BC邊向點(diǎn)C以2cm/s的速度移動,如果P,Q分別從A,B同時出發(fā),設(shè)移動時間為t(s).

(1)當(dāng)t=2時,求△PBQ的面積;
(2)當(dāng) 為多少時,四邊形APQC的面積最。孔钚∶娣e是多少?
(3)當(dāng) 為多少時,△PQB與△ABC相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料,解決下列問題:

材料一:對非負(fù)實(shí)數(shù)x“四舍五入到個位的值記為,即:當(dāng)n為非負(fù)整數(shù)時,如果,則;反之,當(dāng)n為非負(fù)整數(shù)時,如果;則,例如:,,,

材料二:平面直角坐標(biāo)系中任意兩點(diǎn),我們把叫做兩點(diǎn)間的折線距離,并規(guī)定是一定點(diǎn),是直線上的一動點(diǎn),我們把的最小值叫做到直線的折線距離,例如:若,

如果,寫出實(shí)數(shù)x的取值范圍;已知點(diǎn),點(diǎn),且,求a的值.

m為滿足的最大值,求點(diǎn)到直線的折線距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=﹣x+8x軸、y軸分別交于點(diǎn)A和點(diǎn)B,MOB上的一點(diǎn),若將ABM沿AM折疊,點(diǎn)B恰好落在x軸上的點(diǎn)B′處,則直線AM的函數(shù)解析式是( 。

A. y=﹣x+8 B. y=﹣x+8 C. y=﹣x+3 D. y=﹣x+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠AOB和∠COD的兩邊分別互相垂直,且∠COD比∠AOB3倍少60°,則∠COD的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,點(diǎn)O是邊AC上一個動點(diǎn),過O作直線MNBC.設(shè)MN交ACB的平分線于點(diǎn)E,交ACB的外角平分線于點(diǎn)F.

(1)求證:OE=OF;

(2)若CE=12,CF=5,求OC的長;

(3)當(dāng)點(diǎn)O在邊AC上運(yùn)動到什么位置時,四邊形AECF是矩形?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案