【題目】如圖,在平面直角坐標系中有菱形OABC,點A的坐標為(5,0),對角線OB、AC相交于點D,雙曲線y=(x>0)經(jīng)過AB的中點F,交BC于點E,且OBAC=40,有下列四個結(jié)論:
①雙曲線的解析式為y=(x>0);②直線OE的解析式為y=x;③tan∠CAO=;④AC+OB=6;其中正確的結(jié)論有( 。
A. 1個 B. 2個 C. 3個 D. 4個
【答案】D
【解析】
如圖,過F作FG⊥x軸于點G,過B作BM⊥x軸于點M,由菱形的面積可求得BM長,由此可求得AM長,再根據(jù)F為AB中點即可求得F點坐標,根據(jù)F點在雙曲線上利用待定系數(shù)法可求得函數(shù)解析式;根據(jù)點E在雙曲線上可求得點E坐標,繼而可求得直線OE的解析式;過C作CH⊥x軸于點H,則可得HM=BC,可求得AH,CH長,由此即可求得tan∠CAO的值;在直角△OBM中,由勾股定理可求得OB的長,結(jié)合已知條件求得AC長,則可求得AC+OB,可得出答案.
如圖,過F作FG⊥x軸于點G,過B作BM⊥x軸于點M,
∵A(5,0),
∴OA=5,
∴S菱形OABC=OABM=ACOB=×40=20,即5BM=20,
∴BM=4,
在Rt△ABM中,AB=5,BM=4,由勾股定理可得AM=3,
∵F為AB中點,
∴FG是△ABM的中位線,
∴FG=BM=2,MG=AM=,
∴F(,2)
∵雙曲線過點F,
∴k=xy=×2=7,
∴雙曲線解析式為y=(x>0),故①正確;
②由①知,BM=4,故設E(x,4).
將其代入雙曲線y=(x>0),得4=,
∴x=,
∴E(,4),
易得直線OE解析式為:y=x,故②正確;
③過C作CH⊥x軸于點H,
可知四邊形CHMB為矩形,
∴HM=BC=5,
∵AM=3,
∴OM=5﹣3=2,
∴OH=5﹣OM=3,
∴AH=5+3=8
且CH=BM=4,
∴tan∠CAO=,故③正確;
④在直角△OBM中,OM=2,BM=4,
由勾股定理得到:OB==,
∵OBAC=40,
∴AC=,
∴AC+OB=6,故④正確,
綜上所述,正確的結(jié)論由4個,
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的一元二次方程(x﹣3)(x﹣2)=|m|.
(1)求證:對于任意實數(shù)m,方程總有兩個不相等的實數(shù)根;
(2)若方程的一個根是1,求m的值及方程的另一個根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個四位數(shù),記千位數(shù)字與百位數(shù)字之和為x,十位數(shù)字與個位數(shù)字之和為y,如果x=y,那么稱這個四位數(shù)為“平衡數(shù)”.
(1)最小的“平衡數(shù)”為 ;四位數(shù)A與4738之和為最大的“平衡數(shù)”,則A的值為_______;
(2)一個四位“平衡數(shù)”M,它的個位數(shù)字是千位數(shù)字a的3倍,百位數(shù)字b與十位數(shù)字之和為8,求出所有滿足條件的“平衡數(shù)”M的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在平面直角坐標系中.
(1)作出△ABC關(guān)于軸對稱的,并寫出三個頂點的坐標: ( 。,( 。( 。;
(2)直接寫出△ABC的面積為 ;
(3)在軸上畫點P,使PA+PC最小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(-3,2),B(-4,-3),C(-1,-1).
(1)①在圖中作出△ABC 關(guān)于y軸對稱的△A1B1C1并寫出點C1 的坐標(直接寫答案):C1______;②△A1B1C1 的面積為______.
(2)在y軸上畫出點 P,使 PB+PC 最小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=ax+b(a≠0)的圖象與x軸、y軸分別交于點B、C,與反比例函數(shù)y= (m>0)分別交于點A、B.已知A(﹣8,y0),D(x0,4),tan∠BOA=
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求△BOD的面積
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,E,F(xiàn)分別是AD,BC的中點,AF與BE相交于點M,CE與DF相交于點N,QM⊥BE,QN⊥EC相交于點Q,PM⊥AF,PN⊥DF相交于點P,若2BC=3AB,記△ABM和△CDN的面積和為S,則四邊形MQNP的面積為( 。
A. S B. S C. S D. S
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為半圓O的直徑,AD、BC分別切⊙O于A、B兩點,CD切⊙O于點E,AD與CD相交于D,BC與CD相交于C,連接OD、OC,對于下列結(jié)論:
①OD2=DECD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CDOA;⑤∠DOC=90°,
其中正確的是_____.(只需填上正確結(jié)論的序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com