【題目】規(guī)定:如果一個三角形的三個角分別等于另一個三角形的三個角,那么稱這兩個三角形互為等角三角形.從三角形(不是等腰三角形)一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原來三角形是等角三角形,我們把這條線段叫做這個三角形的等角分割線

1)如圖1,在RtABC中,∠ACB90°,CDABD,請寫出圖中兩對等角三角形

2)如圖2,在ABC中,CD為角平分線,∠A40°,∠B60°。求證:CDABC的等角分割線.

3)在ABC中,∠A42°,CDABC的等角分割線,若ACD是等腰三角形,請直接寫出∠ACB的度數(shù).

【答案】1ABCACD,ABCBCD等;(2)見解析;(384°111°

【解析】

1)結(jié)合題意,由三角形內(nèi)角和定理,根據(jù)等角三角形的定義解答;
2)根據(jù)三角形內(nèi)角和定理求出∠ACB,根據(jù)角平分線的定義得到∠ACD=DCB=ACB=40°,根據(jù)等角三角形的定義證明;
3)分△ACD是等腰三角形,DA=DC、DA=AC和△BCD是等腰三角形,DB=BCDC=BD四種情況,根據(jù)等腰三角形的性質(zhì)、三角形內(nèi)角和定理計算.

解:(1)因為∠A=∠A,∠ACB=∠ADC,根據(jù)三角形內(nèi)角和可得∠ACD=∠B,故ABCACD等角三角形; 因為∠B=∠B,∠ACB=∠BDC,根據(jù)三角形內(nèi)角和可得∠DCB=∠A,故ABCBCD等角三角形; 因為∠ACD=∠B,∠ADC=∠BDC,∠DCB=∠A,故ACDBCD等角三角形”.

2)∵在ABC中,∠A40°,∠B60°

∴∠ACB180°﹣∠A﹣∠B80°

CD為角平分線,

∴∠ACD=∠DCBACB40°,

∴∠ACD=∠A,∠DCB=∠A,∴CDDA,

∵在DBC中,∠DCB40°,∠B60°,

∴∠BDC180°﹣∠DCB﹣∠B80°

∴∠BDC=∠ACB,

CDDA,∠BDC=∠ACB,∠DCB=∠A,∠B=∠B

CDABC的等角分割線;

3)有三種情況.①當DADC時,∠ACD=∠A42°,

∴∠ACB=∠BDC42°+42°84°

②當DAAC時,∠ACD=∠ADC69°,

BCD=∠A42°

∴∠ACB69°+42°111°,

③當ACDC時,∠ADC=∠A42°,

∴∠BDC180°42°138°=∠ACB,

此時∠B180°42°138°0°,舍去.

∴∠ACB的度數(shù)為84°111°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是⊙O的內(nèi)接三角形,ABACBCA=65°,作CDAB,并與O相交于點D,連接BD,則∠DBC的大小為

A. 15° B. 35° C. 25° D. 45°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,已知點D,EF分別為BC,AD,AE的中點,且SABC=4cm2,則陰影部分面積S=( 。cm2

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,△ABC中,AB=AC=6,∠A=45°,點DAC上,點EBD上,且△ABD、△CDE、△BCE均為等腰三角形.

1)求∠EBC的度數(shù);

2)求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于45%,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價x(元)符合一次函數(shù)y=kx+b,且x=65時,y=55x=75時,y=45

1)求一次函數(shù)y=kx+b的表達式;

2)若該商場獲得利潤為W元,試寫出利潤W與銷售單價x之間的關系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,現(xiàn)將折疊,使點、兩點重合,折痕所在的直線與直線的夾角為,則的大小為__________度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程x2+2kx+k2+k+3=0的兩根分別是x1、x2,則(x1﹣1)2+(x2﹣1)2的最小值是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,.的面積為.

①圖1中,中點,,,上的四點;

②圖2中,,,,,交于點

③圖3中,D中點,.

其中,陰影部分面積為的是______(填序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是等邊三角形,點D、E分別是直線BC、AC上的點,且BD=CE.

(1)如圖①,當點D、E分別在線段BCAC上時,BEAD相交于點F.求∠AFB的度數(shù).

(2)如圖②,當點DCB的延長線上,點EAC的延長線上時,CFABC的高線則線段CDAF、CE、之間的數(shù)量關系是 ,并加以證明.

(3)在①的條件下,連接FC,如圖③,若∠DFC=90°AF= 3,求BF的長.

查看答案和解析>>

同步練習冊答案