【題目】已知正方形ABC D,E為平面內(nèi)任意一點,連接AE,BE,將△ABE繞點B順時針旋轉(zhuǎn)90°得到△BFC.
(1)如圖1,求證:①;②.
(2)若,
① 如圖2,點E在正方形內(nèi),連接EC,若, ,求的長;
② 如圖3,點E在正方形外,連接EF,若AB=6,當(dāng)C、E、F在一條直線時,
求AE的長.
【答案】見解析
【解析】試題分析:(1)①由旋轉(zhuǎn)的性質(zhì)得到△AEB≌△CFB,利用全等三角形的對應(yīng)邊對應(yīng)角相等證明;
②延長AE交CF于G,交BC于H,證明∠HGC=∠ABC即可;
(2)①連接EF,由BE⊥BF且BE=BF,可得∠BFE=45°,EF2=8,這樣在Rt△ECF中,
利用勾股定理可得FC的長, 即可得到結(jié)論;
②過點B作BG⊥FC于點G,利用勾股定理可得GC,GF的長,即可得到結(jié)論.
試題解析:解:(1)①由旋轉(zhuǎn)的性質(zhì)可知:△ABE≌△CBF,∴AE=CF;
②延長AE交CF于G,交BC于H.由旋轉(zhuǎn)的性質(zhì)可知:△ABE≌△CBF,∴∠BAE=∠BCF.∵∠AHB=∠CHG,∴∠HGC=∠ABC=90°,∴AE⊥CF;
(2)①連接EF.∵△ABE≌△CBF,∴∠ABE=∠CBF,BE=BF,∠BFC=∠BEA.∵∠ABC=90°,∴∠ABE+∠EBC=90°,∴∠EBC+∠FBC=90°,∴∠EBF=90°,∵BE=BF=2,∴EF2=22+22=8,∠BFE=45°,∴∠EFC=90°,∵EC=5,∴FC==,∴AE=;
②過點B作BG⊥FC于點G.∵△FBE是等腰直角三角形,BE=2,∴BG=FG=GE=,在Rt△BGC中,GC==,∴AE=CF=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中國倡導(dǎo)的“一帶一路”建設(shè)將促進我國與世界各國的互利合作.根據(jù)規(guī)劃,“一帶一路”地區(qū)覆蓋總?cè)丝诩s為4400000000人,這個數(shù)用科學(xué)記數(shù)法表示為 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,邊長為6的正方形OABC的頂點A,C分別在x軸和y軸的正半軸上,直線y=mx+2與OC,BC兩邊分別相交于點D,G,以DG為邊作菱形DEFG,頂點E在OA邊上.
(1)如圖1,頂點F在邊AB上,當(dāng)CG=OD時,
求m的值;
菱形DEFG是正方形嗎?如果是請給予證明.
(2)如圖2,連接BF,設(shè)CG=a,△FBG的面積為S,求S與a的函數(shù)關(guān)系式;
(3)如圖3,連接GE,當(dāng)GD平分∠CGE時,請直接寫出m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中國古代數(shù)學(xué)家們對于勾股定理的發(fā)現(xiàn)和證明,在世界數(shù)學(xué)史上具有獨特的貢獻和地位,體現(xiàn)了數(shù)學(xué)研究中的繼承和發(fā)展.現(xiàn)用4個全等的直角三角形拼成如圖所示“弦圖”.Rt△ABC中,∠ACB=90°,若,請你利用這個圖形解決下列問題:
(1)試說明;
(2)如果大正方形的面積是10,小正方形的面積是2,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知2輛A型車和1輛B型車載滿貨物一次可運貨10噸.用1輛A型車和2輛B型車載滿貨物一次可運貨11噸.某物流公司現(xiàn)有31噸貨物,計劃同時租用A型車a輛和B型車b輛,一次運完,且每輛車都滿載貨物.根據(jù)以上信息解答下列問題:
(1)1輛A型車和1輛B型車載滿貨物一次分別可運貨物多少噸?
(2)請幫助物流公司設(shè)計租車方案
(3)若A型車每輛車租金每次100元,B型車每輛車租金每次120元.請選出最省錢的租車方案,并求出最少的租車費.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地生產(chǎn)一種綠色蔬菜,若在市場上直接銷售,每噸利潤為1 000元;經(jīng)粗加工后銷售,每噸利潤可達(dá)4 500元;經(jīng)精加工后銷售,每噸利潤漲至7 500元.
當(dāng)?shù)匾患沂卟斯臼斋@這種蔬菜140噸,該公司加工廠的生產(chǎn)能力是:如果對蔬菜進行粗加工,每天可加工16噸;如果進行精加工,每天可加工6噸,但兩種加工方式不能同時進行,受季節(jié)等條件限制,公司必須在15天內(nèi)將這批蔬菜全部銷售或加工完畢,為此公司制訂了三種方案:
方案一:將蔬菜全部進行粗加工;
方案二:盡可能多的對蔬菜進行精加工,沒有來得及進行加工的蔬菜,在市場上直接銷售;
方案三:將部分蔬菜進行精加工,其余蔬菜進行粗加工,并恰好15天完成.
你認(rèn)為選擇哪種方案獲利最多?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個用來盛爆米花的圓錐形紙杯,紙杯開口的直徑 EF 長為10cm,母線OE(OF)長為10cm,在母線OF 上的點A 處有一塊爆米花殘渣且FA=2cm,一只螞蟻從杯口的點E 處沿圓錐表面爬行到A 點,則此螞蟻爬行的最短距離為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校初二年級在元旦匯演中需要外出租用同一種服裝若干件,已知在沒有任何優(yōu)惠的情況下,甲服裝店租用2件和在乙服裝店租用3件共需280元,在甲服裝店租用4件和在乙服裝店租用一件共需260元.
(1)求兩個服裝店提供的單價分別是多少?
(2)若該種服裝提前一周訂貨則甲乙兩個租售店都可以給予優(yōu)惠,具體辦法如下:甲服裝店按原價的八折進行優(yōu)惠;在乙服裝店如果租用5件以上,且超出5件的部分可按原價的六折進行優(yōu)惠;設(shè)需要租用x件服裝,選擇甲店則需要y1元,選擇乙店則需要y2元,請分別求出y1,y2關(guān)于x的函數(shù)關(guān)系式;
(3)若租用的服裝在5件以上,請問租用多少件時甲乙兩店的租金相同?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形網(wǎng)格中,每個小正方形的邊長均為1個單位長度,△ABC的三個頂點的位置如圖所示,現(xiàn)將△ABC平移,使點A變換為點A′,點B′、C′分別是B、C的對應(yīng)點.
(1)請畫出平移后的△A′B′C′,并求△A′B′C′的面積;
(2)若連接AA′,CC′,則這兩條線段之間的關(guān)系是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com