【題目】如圖,點(diǎn)四點(diǎn)在一條直線上,,.老師說(shuō):再添加一個(gè)條件就可以使.下面是課堂上三個(gè)同學(xué)的發(fā)言,甲說(shuō):添加;乙說(shuō):添加;丙說(shuō):添加.

1)甲、乙、丙三個(gè)同學(xué)說(shuō)法正確的是________

2)請(qǐng)你從正確的說(shuō)法中選擇一種,給出你的證明.

【答案】1)乙、丙;(2)以添加為例,證明見(jiàn)解析.

【解析】

1)由ABDE可得∠B=DEF,結(jié)合AB=DE,可知一角一邊對(duì)應(yīng)相等,根據(jù)三角形全等的判定方法進(jìn)行判斷三個(gè)同學(xué)的說(shuō)法即可;

2)如果選ACDF,可得∠F=ACB,依據(jù)AAS證明全等即可;如果選BE=CF,先證明BC=EF,再根據(jù)SAS證明全等即可.

1)根據(jù)分析可得乙、丙兩位同學(xué)說(shuō)法正確;

2)如果添加

證明:

;

添加條件BE=CF,

證明:

BE=CF,

BE+EC=CF+EC,

BC=EF,

ABCDEF中,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某人為了測(cè)量小山頂上的塔ED的高他在山下的點(diǎn)A處測(cè)得塔尖點(diǎn)D的仰角為45°,再沿AC方向前進(jìn)60 m到達(dá)山腳點(diǎn)B測(cè)得塔尖點(diǎn)D的仰角為60°,塔底點(diǎn)E的仰角為30°,求塔ED的高度.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在△ABC中,AB=10,AC=4ADBC邊上的中線,則AD的取值范圍是_____________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正三角形的邊長(zhǎng)為

如圖①,正方形的頂點(diǎn)、在邊上,頂點(diǎn)在邊上,在正三角形及其內(nèi)部,以點(diǎn)為位似中心,作正方形的位似正方形,且使正方形的面積最大(不要求寫(xiě)作法);

中作出的正方形的邊長(zhǎng);

如圖②,在正三角形中放入正方形和正方形,使得在邊上,點(diǎn)、分別在邊上,求這兩個(gè)正方形面積和的最大值和最小值,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊三角形中,邊的中點(diǎn),邊的延長(zhǎng)線上一點(diǎn),,于點(diǎn).下列結(jié)論錯(cuò)誤的是(

A.

B.

C.

D..

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O的弦ADBC,過(guò)點(diǎn)D的切線交BC的延長(zhǎng)線于點(diǎn)EACDEBD于點(diǎn)H,DO及延長(zhǎng)線分別交AC、BC于點(diǎn)GF

(1)求證:DF垂直平分AC;

(2)求證:FCCE

(3)若弦AD5cm,AC8cm,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,已知拋物線y=ax2+bx+3(a≠0)與x軸交于點(diǎn)A(1,0)和點(diǎn)B(﹣3,0),與y軸交于點(diǎn)C

(1)求拋物線的解析式;

(2)設(shè)拋物線的對(duì)稱軸與x軸交于點(diǎn)M,問(wèn)在對(duì)稱軸上是否存在點(diǎn)P,使△CMP為等腰三角形?若存在,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)如圖②,若點(diǎn)E為第二象限拋物線上一動(dòng)點(diǎn),連接BE、CE,求四邊形BOCE面積的最大值,并求此時(shí)E點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,MOA上一點(diǎn),過(guò)MAB的垂線交AC于點(diǎn)N,交BC的延長(zhǎng)線于點(diǎn)E,直線CFEN于點(diǎn)F,若∠BAC=30°,且∠ECF=E.

(1)試判斷CF與⊙O的位置關(guān)系,并說(shuō)明理由;

(2)設(shè)⊙O的半徑為2,且AC=CE,求AM的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊三角形ABC的外側(cè)作直線AP,點(diǎn)C關(guān)于直線AP的對(duì)稱點(diǎn)為點(diǎn)D,連接AD,BD,其中BD交直線AP于點(diǎn)E.

(1)依題意補(bǔ)全圖形;(2)若∠PAC=20°,求∠AEB的度數(shù);

(3)連結(jié)CE,寫(xiě)出AE, BE, CE之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案