【題目】如圖,在長方形中,,,將長方形繞點(diǎn)逆時(shí)針旋轉(zhuǎn),點(diǎn)、、分別對應(yīng)點(diǎn)、、.
(1)畫出長方形;
(2)聯(lián)結(jié)、、,請用含有、的代數(shù)式表示的面積;
(3)如果交于點(diǎn),請用含有、的代數(shù)式表示的長度.
【答案】(1)見解析;(2);(3).
【解析】
(1)由題意知,A點(diǎn)旋轉(zhuǎn)后對應(yīng)點(diǎn)E正好落在邊CD上,且DE=AD;線段DC的對應(yīng)線段為DG,且,所以A、D、G三點(diǎn)共線,確定了D、E、G三點(diǎn)后,過點(diǎn)E作CD的垂線,過點(diǎn)G作DG的垂線,兩條垂線的交點(diǎn)即為B的對應(yīng)點(diǎn)F;
(2)由旋轉(zhuǎn)的性質(zhì)可得FG、DG的長度,,AB//FG,從而所求三角形的面積為;
(3)利用,結(jié)合(2)中所求的面積可求出線段DH,再求CH即可.
(1)長方形如圖:
(2)由旋轉(zhuǎn)圖形的性質(zhì)可知:
,,,
∴,即、、三點(diǎn)共線,
∴
;
(3)因?yàn)?/span>
∴,
∴,
所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用棋子擺成的“上”字型圖案如圖所示現(xiàn)察此圖案的規(guī)律,并回答:
(1)依照此規(guī)律,第五個(gè)圖形中共有 個(gè)棋子,第八個(gè)圖形中共有 個(gè)棋子.
(2)第(為正整數(shù))個(gè)圖形中共有 個(gè)棋子.
(3)根據(jù)(2)中的結(jié)論,第幾個(gè)圖形中有2022個(gè)棋子?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列圖形都是由相同的小正方形按照一定規(guī)律擺放而成,其中第1個(gè)圖共有3個(gè)小正方形,第2個(gè)圖共有8個(gè)小正方形,第3個(gè)圖共有15個(gè)小正方形,第4個(gè)圖共有24個(gè)小正方形,…,照此規(guī)律排列下去,則第8個(gè)圖中小正方形的個(gè)數(shù)是( 。
A. 48B. 63C. 80D. 99
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知和互相垂直的兩條直線、,垂足為點(diǎn).與關(guān)于直線成軸對稱,與關(guān)于直線成對稱.那么下列說法正確的是( )
A.可以由平移得到B.可以由翻折得到
C.與成軸對稱D.與成中心對稱
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一元二次方程ax2+bx+c=0(a≠0)中,下列說法:
①若a+b+c=0,則b2﹣4ac>0;
②若方程兩根為﹣1和2,則2a+c=0;
③若方程ax2+c=0有兩個(gè)不相等的實(shí)根,則方程ax2+bx+c=0必有兩個(gè)不相等的實(shí)根;
④若b=2a+c,則方程有兩個(gè)不相等的實(shí)根.其中正確的有( 。
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】江南新校區(qū)建設(shè)需運(yùn)送3×105立方米的土石方,閩北運(yùn)輸公司承擔(dān)了該項(xiàng)工程的運(yùn)送任務(wù).
(1)寫出完成運(yùn)送任務(wù)所需的時(shí)間y(單位:天)與公司平均每天的運(yùn)送量x(單位:立方米/天)之間的關(guān)系式是 ;
(2)如果公司平均每天的運(yùn)送量比原計(jì)劃提高20%,按這個(gè)進(jìn)度公司可以比規(guī)定時(shí)間提前10天完成運(yùn)送任務(wù),那么公司平均每天的運(yùn)送量x是多少?
(3)實(shí)際運(yùn)送時(shí),公司派出80輛車,每輛車按問題(2)中提高后的運(yùn)送量運(yùn)輸,若先運(yùn)送了25天,后來由于工程進(jìn)度的需要,剩下的任務(wù)須在20天內(nèi)完成,那么公司至少要增加多少輛同樣型號的車才能按時(shí)完成任務(wù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展以“迎新年”為主題的藝術(shù)活動(dòng),舉辦了四個(gè)項(xiàng)目的比賽.它們分別是:A演講、B唱歌、C書法、D繪畫.要求每位同學(xué)必須參加且限報(bào)一項(xiàng).以九(一)班為樣本進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制如下兩幅統(tǒng)計(jì)圖,請你結(jié)合圖中所給出的信息解答下列問題:
(1)求出參加繪畫比賽的學(xué)生人數(shù)占全班總?cè)藬?shù)的百分比;
(2)求出扇形統(tǒng)計(jì)圖中參加書法比賽的學(xué)生所在的扇形圓心角的度數(shù);
(3)若該校九年級學(xué)生共有500人,請你估計(jì)這次活動(dòng)中參加演講和唱歌的學(xué)生共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于a的方程2(a﹣2)=a+4的解也是關(guān)于x的方程2(x﹣3)﹣b=7的解.
(1)求a、b的值;
(2)若線段AB=a,在直線AB上取一點(diǎn)P,恰好使=b,點(diǎn)Q為PB的中點(diǎn),請畫出圖形并求出線段AQ的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個(gè)長方體紙盒的平面展開圖,已知紙盒中相對兩個(gè)面上的數(shù)互為相反數(shù).
(1)填空:a= ,b= ,c= ;
(2)先化簡,再求值:5a2b﹣[2a2b﹣3(2abc﹣a2b)]+4abc.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com