已知如圖,△ABC外切⊙O于D、E、F三點(diǎn),內(nèi)切圓⊙O的半徑為1,∠C=60°,AB=5,則△ABC的周長(zhǎng)為(   )

A、12   B、14  C、10+2  D、10+
C
如圖,連接OE、OF、OC,
∵∠C=60°,
∴∠OCE=30°,
∵OE=1,
∴OC=2,CE= ,
∴CF= ,
∵△ABC內(nèi)切⊙O于D、E、F三點(diǎn),
∴BD=BE,AD=AF,
∵AB=5,
∴AD+BD=AF+BE=5,
∴△ABC的周長(zhǎng)=AD+BD+AF+BE+CD+CE,
=5+5+2 ,
=10+2 .
故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)在半徑為10的圓的鐵片中,要裁剪出一個(gè)直角扇形,求能裁剪出的最大的直角扇形的面積?(2)若用這個(gè)最大的直角扇形恰好圍成一個(gè)圓錐,求這個(gè)圓錐的底面圓的半徑? (3)能否從最大的余料③中剪出一個(gè)圓做該圓錐的底面?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,為正比例函數(shù)圖象上的一個(gè)動(dòng)點(diǎn),⊙P的半徑為,當(dāng)⊙P與直線相切時(shí),則點(diǎn)的坐標(biāo)為             

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知⊙、⊙外切于點(diǎn),經(jīng)過點(diǎn)的任一直線分別與⊙、⊙交于點(diǎn)、
(1)若⊙、⊙是等圓(如圖1),求證;
(2)若⊙、⊙的半徑分別為、(如圖2),試寫出線段、、之間始終存在的數(shù)量關(guān)系(不需要證明).
  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知扇形PAB的圓心角為1200,面積為300лcm2。
(1)求扇形的弧長(zhǎng);
(2)若把此扇形卷成一個(gè)圓錐,則這個(gè)圓錐的底面半徑是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

以坐標(biāo)原點(diǎn)為圓心,1為半徑的圓分別交x,y軸的正半軸于點(diǎn)A,B.

(1)如圖一,動(dòng)點(diǎn)P從點(diǎn)A處出發(fā),沿x軸向右勻速運(yùn)動(dòng),與此同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B處出發(fā),沿圓周按順時(shí)針方向勻速運(yùn)動(dòng).若點(diǎn)Q的運(yùn)動(dòng)速度比點(diǎn)P的運(yùn)動(dòng)速度慢,經(jīng)過1秒后點(diǎn)P運(yùn)動(dòng)到點(diǎn)(2,0),此時(shí)PQ恰好是的切線,連接OQ.求的大小;
(2)若點(diǎn)Q按照(1)中的方向和速度繼續(xù)運(yùn)動(dòng),點(diǎn)P停留在點(diǎn)(2,0)處不動(dòng),求點(diǎn)Q再經(jīng)過5秒后直線PQ被截得的弦長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點(diǎn)、、是⊙O上的三點(diǎn),.
(1)求證:平分.
(2)過點(diǎn)于點(diǎn),交于點(diǎn). 若,,求的長(zhǎng). )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如果兩圓的半徑分別為4和6,圓心距為10,那么這兩圓的位置關(guān)系是【   】
A.內(nèi)含B.外離C.相交D.外切

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知兩圓的半徑分別為1和3,當(dāng)這兩圓內(nèi)含時(shí),圓心距d的范圍是【   】
A.0<d<2B.1<d<2C.0<d<3D.0≤d<2

查看答案和解析>>

同步練習(xí)冊(cè)答案