【題目】如圖,函數(shù)的圖象交于

1)求出m、n的值;

2)直接寫出不等式的解集;

3)求出的面積.

【答案】1m=-0.75,n=2.5;(2x>2.5;(3SABP=

【解析】

1)根據(jù)凡是函數(shù)圖象經(jīng)過的點必能滿足解析式把P點坐標代入y=-2x+3可得n的值,進而可得P點坐標,再把P點坐標代入y=-x+m可得m的值;
2)根據(jù)函數(shù)圖象可直接得到答案;
3)首先求出A、B兩點坐標,進而可得△ABP的面積

解:(1)∵y=-2x+3Pn,-2).
-2=-2n+3,解得:n=
P,-2),
y=x+m的圖象過P-2).
-2=×+m,
解得:m=;

2)根據(jù)圖像可知,x時,y=-x的圖像在y=-2x+3的上方,

∴不等式的解集為:x;

3)∵當y=-2x+3中,x=0時,y=3,
A0,3),

中,x=0時,y=-,

B0-),
AB=

∴△ABP的面積:.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了解本校九年級學生期末數(shù)學考試情況,在九年級隨機抽取了一部分學生 的期末數(shù)學成績?yōu)闃颖,分?/span> A(90~100 分);B(80~89 分);C(60~79 分);D(0~59 分)四個等級進行統(tǒng)計,并將統(tǒng)計結果繪制成如下統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答以下 問題.

(1)這次隨機抽取的學生共有多少人?

(2)請補全條形統(tǒng)計圖;

(3)這個學校九年級共有學生 1200 人,若分數(shù)為 80 分(含 80 分)以上為優(yōu)秀,請估 計這次九年級學生期末數(shù)學考試成績?yōu)閮?yōu)秀的學生人數(shù)大約有多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)ykx+bk、b是常數(shù))當自變量x的取值為1x5時,對應的函數(shù)值的范圍為﹣2y2,則此一次函數(shù)的解析式為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為積極響應弘揚傳統(tǒng)文化的號召,某學校組織全校1200名學生進行經(jīng)典詩詞誦讀活動,并在活動之后舉辦經(jīng)典詩詞大賽,為了解本次系列活動的持續(xù)效果,學校團委在活動啟動之初,隨機抽取40名學生調查一周詩詞誦背數(shù)量,根據(jù)調查結果繪制成的統(tǒng)計圖如圖所示.

大賽結束后一個月,再次抽查這部分學生一周詩詞誦背數(shù)量,繪制成統(tǒng)計表如下:

一周詩詞誦背數(shù)量

3

4

5

6

7

8

人數(shù)

1

3

5

6

10

15

請根據(jù)調查的信息

1)求活動啟動之初學生一周詩詞誦背數(shù)量的中位數(shù);

2)估計大賽后一個月該校學生一周詩詞誦背6首(含6首)以上的人數(shù);

3)選擇適當?shù)慕y(tǒng)計量,至少從兩個不同的角度分析兩次調查的相關數(shù)據(jù),評價該校經(jīng)典詩詞誦背系列活動的效果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店經(jīng)銷一種雙肩包,已知這種雙肩包的成本價為每個30元.市場調查發(fā)現(xiàn),這種雙肩包每天的銷售量y(單位:個)與銷售單價x(單位:元)有如下關系:y=-x+60(30≤x≤60).

設這種雙肩包每天的銷售利潤為w元.

(1)求w與x之間的函數(shù)解析式;

(2)這種雙肩包銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?

(3)如果物價部門規(guī)定這種雙肩包的銷售單價不高于48元,該商店銷售這種雙肩包每天要獲得200元的銷售利潤,銷售單價應定為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的對角線ACBD相交于點O,BEAC,AEBD,OEAB交于點F.

1)試判斷四邊形AEBO的形狀,并說明理由;

2)若OE=10,AC=16,求菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線l1yx+n2與直線l2ymx+n相交于點P1,2).

1)求m,n的值;

2)請結合圖象直接寫出不等式mx+nx+n2的解集.

3)若直線l1y軸交于點A,直線l2x軸交于點B,求四邊形PAOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請閱讀下列材料:

問題:如圖1,在等邊三角形ABC內(nèi)有一點P,且PA=2,PB=PC=1、求∠BPC度數(shù)的大小和等邊三角形ABC的邊長.

李明同學的思路是:將△BPC繞點B逆時針旋轉60°,畫出旋轉后的圖形(如圖2),連接PP′,可得△P′PC是等邊三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可證),從而得到∠BPC=AP′B=__________;,進而求出等邊△ABC的邊長為__________;

問題得到解決.

請你參考李明同學的思路,探究并解決下列問題:如圖3,在正方形ABCD內(nèi)有一點P,且PA=,BP=,PC=1.求∠BPC度數(shù)的大小和正方形ABCD的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在課外學習時遇到這樣一個問題

定義如果二次函數(shù)y=a1x2+b1x+c1a1≠0a1,b1c1是常數(shù)y=a2x2+b2x+c2a2≠0,a2,b2,c2是常數(shù)滿足a1+a2=0,b1=b2,c1+c2=0,則稱這兩個函數(shù)互為“旋轉函數(shù)”

求函數(shù)y=﹣x2+4x﹣3的“旋轉函數(shù)”.小明是這樣思考的由函數(shù)y=﹣x2+4x﹣3可知a1=﹣1,b1=4c1=﹣3,根據(jù)a1+a2=0b1=b2,c1+c2=0,求出a2b2,c2,就能確定這個函數(shù)的“旋轉函數(shù)”

1請參考小明的方法寫出函數(shù)y=﹣x2+4x﹣3的“旋轉函數(shù)”;

2若函數(shù)y=x23nx+n互為“旋轉函數(shù)”

查看答案和解析>>

同步練習冊答案