【題目】如圖,函數(shù)與的圖象交于.
(1)求出m、n的值;
(2)直接寫出不等式的解集;
(3)求出的面積.
【答案】(1)m=-0.75,n=2.5;(2)x>2.5;(3)S△ABP=
【解析】
(1)根據(jù)凡是函數(shù)圖象經(jīng)過的點必能滿足解析式把P點坐標代入y=-2x+3可得n的值,進而可得P點坐標,再把P點坐標代入y=-x+m可得m的值;
(2)根據(jù)函數(shù)圖象可直接得到答案;
(3)首先求出A、B兩點坐標,進而可得△ABP的面積
解:(1)∵y=-2x+3過P(n,-2).
∴-2=-2n+3,解得:n=,
∴P(,-2),
∵y=x+m的圖象過P(,-2).
∴-2=×+m,
解得:m=;
(2)根據(jù)圖像可知,x>時,y=-x的圖像在y=-2x+3的上方,
∴不等式的解集為:x>;
(3)∵當y=-2x+3中,x=0時,y=3,
∴A(0,3),
∵中,x=0時,y=-,
∴B(0,-),
∴AB=;
∴△ABP的面積:.
科目:初中數(shù)學 來源: 題型:
【題目】為了解本校九年級學生期末數(shù)學考試情況,在九年級隨機抽取了一部分學生 的期末數(shù)學成績?yōu)闃颖,分?/span> A(90~100 分);B(80~89 分);C(60~79 分);D(0~59 分)四個等級進行統(tǒng)計,并將統(tǒng)計結果繪制成如下統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答以下 問題.
(1)這次隨機抽取的學生共有多少人?
(2)請補全條形統(tǒng)計圖;
(3)這個學校九年級共有學生 1200 人,若分數(shù)為 80 分(含 80 分)以上為優(yōu)秀,請估 計這次九年級學生期末數(shù)學考試成績?yōu)閮?yōu)秀的學生人數(shù)大約有多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)y=kx+b(k、b是常數(shù))當自變量x的取值為1≤x≤5時,對應的函數(shù)值的范圍為﹣2≤y≤2,則此一次函數(shù)的解析式為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為積極響應“弘揚傳統(tǒng)文化”的號召,某學校組織全校1200名學生進行經(jīng)典詩詞誦讀活動,并在活動之后舉辦經(jīng)典詩詞大賽,為了解本次系列活動的持續(xù)效果,學校團委在活動啟動之初,隨機抽取40名學生調查“一周詩詞誦背數(shù)量”,根據(jù)調查結果繪制成的統(tǒng)計圖如圖所示.
大賽結束后一個月,再次抽查這部分學生“一周詩詞誦背數(shù)量”,繪制成統(tǒng)計表如下:
一周詩詞誦背數(shù)量 | 3首 | 4首 | 5首 | 6首 | 7首 | 8首 |
人數(shù) | 1 | 3 | 5 | 6 | 10 | 15 |
請根據(jù)調查的信息
(1)求活動啟動之初學生“一周詩詞誦背數(shù)量”的中位數(shù);
(2)估計大賽后一個月該校學生一周詩詞誦背6首(含6首)以上的人數(shù);
(3)選擇適當?shù)慕y(tǒng)計量,至少從兩個不同的角度分析兩次調查的相關數(shù)據(jù),評價該校經(jīng)典詩詞誦背系列活動的效果.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店經(jīng)銷一種雙肩包,已知這種雙肩包的成本價為每個30元.市場調查發(fā)現(xiàn),這種雙肩包每天的銷售量y(單位:個)與銷售單價x(單位:元)有如下關系:y=-x+60(30≤x≤60).
設這種雙肩包每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)解析式;
(2)這種雙肩包銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價部門規(guī)定這種雙肩包的銷售單價不高于48元,該商店銷售這種雙肩包每天要獲得200元的銷售利潤,銷售單價應定為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC、BD相交于點O,BE∥AC,AE∥BD,OE與AB交于點F.
(1)試判斷四邊形AEBO的形狀,并說明理由;
(2)若OE=10,AC=16,求菱形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線l1:y=x+n﹣2與直線l2:y=mx+n相交于點P(1,2).
(1)求m,n的值;
(2)請結合圖象直接寫出不等式mx+n>x+n﹣2的解集.
(3)若直線l1與y軸交于點A,直線l2與x軸交于點B,求四邊形PAOB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請閱讀下列材料:
問題:如圖1,在等邊三角形ABC內(nèi)有一點P,且PA=2,PB=,PC=1、求∠BPC度數(shù)的大小和等邊三角形ABC的邊長.
李明同學的思路是:將△BPC繞點B逆時針旋轉60°,畫出旋轉后的圖形(如圖2),連接PP′,可得△P′PC是等邊三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可證),從而得到∠BPC=∠AP′B=__________;,進而求出等邊△ABC的邊長為__________;
問題得到解決.
請你參考李明同學的思路,探究并解決下列問題:如圖3,在正方形ABCD內(nèi)有一點P,且PA=,BP=,PC=1.求∠BPC度數(shù)的大小和正方形ABCD的邊長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明在課外學習時遇到這樣一個問題:
定義:如果二次函數(shù)y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常數(shù))與y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常數(shù))滿足a1+a2=0,b1=b2,c1+c2=0,則稱這兩個函數(shù)互為“旋轉函數(shù)”.
求函數(shù)y=﹣x2+4x﹣3的“旋轉函數(shù)”.小明是這樣思考的:由函數(shù)y=﹣x2+4x﹣3可知,a1=﹣1,b1=4,c1=﹣3,根據(jù)a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2,就能確定這個函數(shù)的“旋轉函數(shù)”.
(1)請參考小明的方法寫出函數(shù)y=﹣x2+4x﹣3的“旋轉函數(shù)”;
(2)若函數(shù)與y=x2﹣3nx+n互為“旋轉函數(shù)”,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com