【題目】如圖是由一些火柴搭成的圖案:

1)觀察圖案的規(guī)律,第5個圖案需________根火柴;

2)照此規(guī)律,第2020個圖案需要的火柴為多少根?

【答案】121;(28081

【解析】

1)根據(jù)圖形中的三個圖案知,每個圖案都比上一個圖案多一個五邊形,但是只增加4根火柴,根據(jù)此規(guī)律可得答案;

2)根據(jù)(1)得出規(guī)律,代入即可.

1)由題目得,第個圖案所用的火柴數(shù):1+4=1+4×1=5

個圖案所用的火柴數(shù):1+4+4=1+4×2=9,

個圖案所用的火柴數(shù):1+4+4+4=1+4×3=13

個圖案所用的火柴數(shù):1+4+4+4+4=1+4×4=17,

個圖案所用的火柴數(shù):1+4+4+4+4+4=1+4×5=21,

故答案為:21

2)按(1)的方法,依此類推,得出第n個圖案需要根火柴

n=2020時,所用的火柴數(shù)為:;

故擺第2020個圖案需要用8081根火柴棒.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知AMCN,點B為平面內一點,ABBCB.

(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關系___;

(2)如圖2,過點BBDAM于點D,求證:∠ABD=C;

(3)如圖3,(2)問的條件下,E. FDM,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+NCF=180°,∠BFC=3DBE,求∠EBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】周末,小華和小亮想用所學的數(shù)學知識測量家門前小河的寬.測量時,他們選擇了河對岸邊的一棵大樹,將其底部作為點A,在他們所在的岸邊選擇了點B,使得AB與河岸垂直,并在B點豎起標桿BC,再在AB的延長線上選擇點D豎起標桿DE,使得點E與點C、A共線.

已知:CBAD,EDAD,測得BC=1m,DE=1.5m,BD=8.5m.測量示意圖如圖所示.請根據(jù)相關測量信息,求河寬AB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知E,F分別為正方形ABCD的邊AB,BC的中點,AFDE交于點M,OBD的中點,則下列結論:①∠AME=90°;②∠BAF=EDB;③∠BMO=90°;MD=2AM=4EM;AM=MF.其中正確結論的是(

A. ①③④ B. ②④⑤ C. ①③④⑤ D. ①③⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADCD,BCCD,ECD的中點,連接AEBE,BEAE,延長AEBC的延長線于點F

證明:(1)FC=AD;

2AB=BC+AD。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在RtABC中,∠ACB=90°,AC=4,BC=2,DAC邊上的一個動點,將ABD沿BD所在直線折疊,使點A落在點P處.

(1)如圖1,若點DAC中點,連接PC

①寫出BPBD的長;

②求證:四邊形BCPD是平行四邊形.

(2)如圖2,若BD=AD,過點PPHBCBC的延長線于點H,求PH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點D、F、EG都在ABC的邊上,EFAD1=2,BAC=70°,求∠AGD的度數(shù).(請在下面的空格處填寫理由或數(shù)學式)

解:∵EFAD,(已知)

∴∠2=      

∵∠1=2,(已知)

∴∠1=      

      ,(   

∴∠AGD+   =180°,(兩直線平行,同旁內角互補)

   ,(已知)

∴∠AGD=   (等式性質)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某運輸部門規(guī)定:辦理托運,當一種物品的重量不超過16千克時,需付基礎費30元和保險費a元:為限制過重物品的托運,當一件物品超過16千克時,除了付以上基礎費和保險費外,超過部分每千克還需付b元超重費.設某件物品的重量為x千克.

(1)x≤16時,支付費用為__________________(用含a的代數(shù)式表示);

x≥16時,支付費用為_________________(用含xa、b的代數(shù)式表示);

(2)甲、乙兩人各托運一件物品,物品重量和支付費用如下表所示

物品重量(千克)

支付費用(元)

18

39

25

53

試根據(jù)以上提供的信息確定a,b的值.

3)根據(jù)這個規(guī)定,若丙要托運一件超過16千克的物品,但支付的費用不想超過70元,那么丙托運的物品最多是多少千克.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長方形ABCD,AB>BC,把長方形沿對角線AC所在直線折疊,使點B落在點E,AECD于點F,連接DE

求證:(1)AED≌△CDE

(2)EFD是等腰三角形.

查看答案和解析>>

同步練習冊答案