某賓館有30個房間供游客住宿,當每個房間的房價為每天120元時,房間會全部住滿.當每個房間每天的房價每增加10元時,就會有一個房間空閑.賓館需對游客居住的每個房間每天支出20元的各種費用.根據(jù)規(guī)定,每個房間每天的房價不得高于210元.設每個房間的房價增加x元(x為10的正整數(shù)倍).
(1)設一天訂住的房間數(shù)為y,直接寫出y與x的函數(shù)關系式及自變量x的取值范圍;
(2)設賓館一天的利潤為w元,求w與x的函數(shù)關系式;
(3)一天訂住多少個房間時,賓館的利潤最大?最大利潤是多少元?
(1)y=30-,且0<x≤90,且x為10的正整數(shù)倍;
(2)w=-x2+20x+3000;
(3)一天訂住21個房間時,賓館每天利潤最大,最大利潤為3990元.

試題分析:(1)理解每個房間的房價每增加x元,則減少房間間,則可以得到y(tǒng)與x之間的關系;
(2)每個房間訂住后每間的利潤是房價減去20元,每間的利潤與所訂的房間數(shù)的積就是利潤;
(3)求出二次函數(shù)的對稱軸,根據(jù)二次函數(shù)的增減性以及x的范圍即可求解.
(1)由題意得:
y=30-,且0<x≤90,且x為10的正整數(shù)倍;
(2)w=(120-20+x)(30-),
整理,得w=-x2+20x+3000.
(3)w=-x2+20x+3000
=-(x-100)2+4000.
∵a=,
∴拋物線的開口向下,當x<100時,w隨x的增大而增大,又0<x≤90,因而當x=90時,利潤最大,此時一天訂住的房間數(shù)是:30-=21間,最大利潤是3990元.
答:一天訂住21個房間時,賓館每天利潤最大,最大利潤為3990元.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖, 已知拋物線與y軸相交于C,與x軸相交于A、B,點A的坐標為(2,0),點C的坐標為(0,-1)。
(1)求拋物線的解析式;
(2)點E是線段AC上一動點,過點E作DE⊥x軸于點D,連結DC,當△DCE的面積最大時,求點D的坐標;
(3)在直線BC上是否存在一點P,使△ACP為等腰三角形,若存在,求點P的坐標,若不存在,說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,已知兩點A(-1,0),B(4,0),以AB為直徑的半圓P交y軸于點C.
(1)求經(jīng)過A、B、C三點的拋物線的解析式;
(2)設弦AC的垂直平分線交OC于D,連接AD并延長交半圓P于點E,相等嗎?請證明你的結論;
(3)設點M為x軸負半軸上一點,OM=AE,是否存在過點M的直線,使該直線與(1)中所得的拋物線的兩個交點到y(tǒng)軸的距離相等?若存在,求出這條直線對應函數(shù)的解析式;若不存在.請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,△ABC的邊AB在x軸上,∠ABC=90°,AB=BC,OA=1,OB=4,拋物線經(jīng)過A、C兩點.
(1)求拋物線的解析式及其頂點坐標;
(2)如圖①,點P是拋物線上位于x軸下方的一點,點Q與點P關于拋物線的對稱軸對稱,過點P、Q分別向x軸作垂線,垂足為點D、E,記矩形DPQE的周長為d,求d的最大值,并求出使d最大值時點P的坐標;
(3)如圖②,點M是拋物線上位于直線AC下方的一點,過點M作MF⊥AC于點F,連接MC,作MN∥BC交直線AC于點N,若MN將△MFC的面積分成2:3兩部分,請確定M點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知P(﹣3,m)和Q(1,m)是拋物線y=2x2+bx+1上的兩點.
(1)求b的值;
(2)判斷關于x的一元二次方程2x2+bx+1=0是否有實數(shù)根,若有,求出它的實數(shù)根;若沒有,請說明理由;
(3)將拋物線y=2x2+bx+1的圖象向上平移k(k是正整數(shù))個單位,使平移后的圖象與x軸無交點,求k的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

“如果二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個公共點,那么一元二次方程ax2+bx+c=0有兩個不相等的實數(shù)根.”請根據(jù)你對這句話的理解,解決下面問題:若m、n(m<n)是關于x的方程的兩根,且a < b, 則a、b、m、n 的大小關系是(   ) 
A.m < a < b< nB.a(chǎn) < m < n < bC.a(chǎn) < m < b< nD.m < a < n < b

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

方程x2+2x-1=0的根可看成函數(shù)y=x+2與函數(shù)的圖象交點的橫坐標,用此方法可推斷方程x3+x-1=0的實數(shù)根x所在范圍為( )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=a(x2-6x+8)(a>0)的圖象與x軸交于點A、B兩點,與y軸交于點C.
(1)求A、B兩點的坐標;
(2)若S△ABC=8,則過A、B、C三點的圓是否與拋物線有第四個交點D?若存在,求出D點坐標;若不存在,說明理由.
(3)將△OAC沿直線AC翻折,點O的對應點為O'.
①若O'落在該拋物線的對稱軸上,求實數(shù)a的值;
②是否存在正整數(shù)a,使得點O'落在△ABC的內(nèi)部,若存在,求出整數(shù)a的值;若不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

若關于x的函數(shù)y=kx2+2x﹣1與x軸僅有一個公共點,則實數(shù)k的值為      

查看答案和解析>>

同步練習冊答案