【題目】如圖所示,AD,BE是鈍角△ABC的邊BC,AC上的高,求證: = .
【答案】證明:∵AD,BE是鈍角△ABC的邊BC,AC上的高,
∴∠D=∠E=90°,
∵∠ACD=∠BCE,
∴△ACD∽△BCE,
∴ =
【解析】由AD,BE是鈍角△ABC的邊BC,AC上的高,可得∠D=∠E=90°,又由∠ACD=∠BCE,即可證得△ACD∽△BCE,然后由相似三角形的對(duì)應(yīng)邊成比例,證得結(jié)論.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解相似三角形的判定與性質(zhì)的相關(guān)知識(shí),掌握相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了傳承優(yōu)秀傳統(tǒng)文化,我市組織了一次初三年級(jí)1 200名學(xué)生參加的“漢字聽寫”大賽,為了更好地了解本次大賽的成績(jī)分布情況,隨機(jī)抽取了100名學(xué)生的成績(jī)(滿分50分),整理得到如下的統(tǒng)計(jì)圖表:
成績(jī)(分) | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
人數(shù) | 1 | 2 | 3 | 3 | 6 | 7 | 5 | 8 | 15 | 9 | 11 | 12 | 8 | 6 | 4 |
成績(jī)分組 | 頻數(shù) | 頻率(百分比) |
35≤x<38 | 3 | 0.03 |
38≤x<41 | a | 0.12 |
41≤x<44 | 20 | 0.20 |
44≤x<47 | 35 | 0.35 |
47≤x≤50 | 30 | b |
請(qǐng)根據(jù)所提供的信息解答下列問(wèn)題:
(1)頻率統(tǒng)計(jì)表中a=________,b=_______;
(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(3)請(qǐng)根據(jù)抽樣統(tǒng)計(jì)結(jié)果,估計(jì)該次大賽中成績(jī)不低于41分的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的方程x2+(2k+1)x+k2+2=0有兩個(gè)實(shí)數(shù)根x1、x2
(1)求實(shí)數(shù)k的取值范圍;
(2)若x1、x2滿足|x1|+|x2|=|x1x2|﹣1,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】P是正方形ABCD的BC邊上一點(diǎn),連結(jié)AP,AB=8,BP=3,Q是線段AP上一動(dòng)點(diǎn),連結(jié)BQ并延長(zhǎng)交四邊形ABCD的一邊于點(diǎn)R,若點(diǎn)Q是BR的三等分點(diǎn),則AR的長(zhǎng)為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解同學(xué)們每月零花錢的數(shù)額,校園小記者隨機(jī)調(diào)查了本校部分同學(xué),根據(jù)調(diào)查結(jié)果,繪制出了如下尚不完整的統(tǒng)計(jì)圖表。
請(qǐng)根據(jù)以上圖表,解答下列問(wèn)題:
(1)這次被調(diào)查的同學(xué)共有_____________人,a+b=______________,m=________;
(2)求扇形統(tǒng)計(jì)圖中扇形C的圓心角度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,在△ABC中,∠B=45°,∠BCA=30°,過(guò)點(diǎn)A、B、C三點(diǎn)作⊙O,過(guò)點(diǎn)C作⊙O的切線交BA延長(zhǎng)線于點(diǎn)D,連接OA交BC于E.
(1)求證:OA∥CD;
(2)求證:△ABE∽△DCA;
(3)若OA=2,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖的矩形ABCD中,E點(diǎn)在CD上,且AE<AC.若P、Q兩點(diǎn)分別在AD、AE上,AP:PD=4:1,AQ:QE=4:1,直線PQ交AC于R點(diǎn),且Q、R兩點(diǎn)到CD的距離分別為q、r,則下列關(guān)系何者正確?( 。
A.q<r,QE=RC
B.q<r,QE<RC
C.q=r,QE=RC
D.q=r,QE<RC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形 ABCD中, AB16 , BC18 ,點(diǎn) E在邊 AB 上,點(diǎn) F 是邊 BC 上不與點(diǎn) B、C 重合的一個(gè)動(dòng)點(diǎn),把△EBF沿 EF 折疊,點(diǎn)B落在點(diǎn) B' 處.
(I)若 AE0 時(shí),且點(diǎn) B' 恰好落在 AD 邊上,請(qǐng)直接寫出 DB' 的長(zhǎng);
(II)若 AE3 時(shí), 且△CDB' 是以 DB' 為腰的等腰三角形,試求 DB' 的長(zhǎng);
(III)若AE8時(shí),且點(diǎn) B' 落在矩形內(nèi)部(不含邊長(zhǎng)),試直接寫出 DB' 的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com