【題目】如圖所示的正方形網(wǎng)格中,△的頂點(diǎn)均在格點(diǎn)上,請(qǐng)?jiān)谒o直角坐標(biāo)系中按要求畫(huà)圖和解答下列問(wèn)題:
(1)作出△關(guān)于y軸對(duì)稱的△ A1B1C1,并寫(xiě)出點(diǎn)C1的坐標(biāo).
(2)以點(diǎn)為旋轉(zhuǎn)中心,將△繞點(diǎn)順時(shí)針旋轉(zhuǎn)得△ A2B2C2,畫(huà)出△ A2B2C2 ,并寫(xiě)出點(diǎn)C2的坐標(biāo).
(3)畫(huà)出△關(guān)于坐標(biāo)原點(diǎn)成中心對(duì)稱的△ A3B3C3,并寫(xiě)出點(diǎn)C3的坐標(biāo).
【答案】(1)見(jiàn)解析,點(diǎn)C1的坐標(biāo)為(4,-1);(2)見(jiàn)解析,點(diǎn)C2的坐標(biāo)為(-2,3);(3)見(jiàn)解析,點(diǎn)C3的坐標(biāo)為(4,1).
【解析】
(1)分別找出點(diǎn)A、B、C關(guān)于y軸的對(duì)稱點(diǎn),順次連接,根據(jù)所作圖形可得點(diǎn)C1的坐標(biāo);
(2)分別找出點(diǎn)A、B、C旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)位置,順次連接,根據(jù)所作圖形可得點(diǎn)C2的坐標(biāo);
(3)分別找出點(diǎn)A、B、C關(guān)于坐標(biāo)原點(diǎn)成中心對(duì)稱的點(diǎn)的位置,順次連接,根據(jù)所作圖形可得點(diǎn)C3的坐標(biāo).
解:(1)如圖所示,△ A1B1C1即為所求,點(diǎn)C1的坐標(biāo)為(4,-1);
(2)如圖所示,△ A2B2C2即為所求,點(diǎn)C2的坐標(biāo)為(-2,3);
(3)如圖所示,△ A3B3C3即為所求,點(diǎn)C3的坐標(biāo)為(4,1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖①,在矩形ABCD中,AB=3,AD=4,AE⊥BD,垂足是E.點(diǎn)F是點(diǎn)E關(guān)于AB的對(duì)稱點(diǎn),連接AF、BF.
(1)求AF和BE的長(zhǎng);
(2)若將△ABF沿著射線BD方向平移,設(shè)平移的距離為m(平移距離指點(diǎn)B沿BD方向所經(jīng)過(guò)的線段長(zhǎng)度).當(dāng)點(diǎn)F分別平移到線段AB、AD上時(shí),直接寫(xiě)出相應(yīng)的m的值.
(3)如圖②,將△ABF繞點(diǎn)B順時(shí)針旋轉(zhuǎn)一個(gè)角α(0°<α<180°),記旋轉(zhuǎn)中的△ABF為△A′BF′,在旋轉(zhuǎn)過(guò)程中,設(shè)A′F′所在的直線與直線AD交于點(diǎn)P,與直線BD交于點(diǎn)Q.是否存在這樣的P、Q兩點(diǎn),使△DPQ為等腰三角形?若存在,求出此時(shí)DQ的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線交y軸于點(diǎn)B(0,3),交x軸于A,C兩點(diǎn),C點(diǎn)坐標(biāo)(4,0),點(diǎn)P是BC上方拋物線上一動(dòng)點(diǎn)(P不與B,C重合).
(1)求拋物線的解析式;
(2)若點(diǎn)P到直線BC距離是,求點(diǎn)P的坐標(biāo);
(3)連接AP交線段BC于點(diǎn)H,點(diǎn)M是y軸負(fù)半軸上一點(diǎn),且CH=BM,當(dāng)AH+CM的值最小時(shí),請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是矩形,AD∥x軸,A(,),AB=1,AD=2.
(1)直接寫(xiě)出B、C、D三點(diǎn)的坐標(biāo);
(2)將矩形ABCD向右平移m個(gè)單位,使點(diǎn)A、C恰好同時(shí)落在反比例函數(shù)()的圖象上,得矩形A′B′C′D′.求矩形ABCD的平移距離m和反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC內(nèi)接于⊙O,AB是直徑,OD⊥BC于點(diǎn)D,延長(zhǎng)DO交⊙O于F,連接OC,AF.
(1)求證:△COD≌△BOD;
(2)填空:①當(dāng)∠1= 時(shí),四邊形OCAF是菱形;
②當(dāng)∠1= 時(shí),AB=2OD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,中,,,為上一動(dòng)點(diǎn),且,與的延長(zhǎng)線交于點(diǎn),連接.
(1)①求證:;
②若,當(dāng)時(shí),求的長(zhǎng);
(2)如圖2,當(dāng)時(shí),求證:平分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過(guò)A(-1,0),B(4,0),C(0,2)三點(diǎn).
(1)求這條拋物線的解析式;
(2)E為拋物線上一動(dòng)點(diǎn),是否存在點(diǎn)E,使以A、B、E為頂點(diǎn)的三角形與△COB相似?若存在,試求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若將直線BC平移,使其經(jīng)過(guò)點(diǎn)A,且與拋物線相交于點(diǎn)D,連接BD,試求出∠BDA的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△AOB中,∠AOB=90°,AO=3BO,OB在x軸上,將Rt△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)至△RtA'OB',其中點(diǎn)B'落在反比例函數(shù)y=﹣的圖象上,OA'交反比例函數(shù)y=的圖象于點(diǎn)C,且OC=2CA',則k的值為( 。
A. 4 B. C. 8 D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,,,,是線段上一個(gè)動(dòng)點(diǎn),以為邊在外作等邊.若是的中點(diǎn),則的最小值為( )
A.6B.8C.9D.10
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com