【題目】如圖所示,線段AC⊙O的直徑,過(guò)A點(diǎn)作直線BF⊙OAB兩點(diǎn),過(guò)A點(diǎn)作∠FAC的角平分線交⊙OD,過(guò)DAF的垂線交AFE

1)證明DE⊙O的切線;

2)證明AD22AEOA;

3)若⊙O的直徑為10DE+AE4,求AB

【答案】1)證明見解析

2)證明見解析

38

【解析】

1)連接OD,,即可證明

2)連接CD,根據(jù)已知條件證明ACD∽△ADE即可求解.
3)過(guò)點(diǎn)OOMAB于點(diǎn)M,則四邊形ODEM為矩形,設(shè)DE=OM=xAE4xAM5-(4x)1+x,在RtAMO中,OA2AM2+OM2列出方程求解x再利用垂徑定理即可求解.

(1)證明:連接OD,

∵AD平分

∴AF∥OD

又∵

DE為⊙O切線;

2)證明:連接CD

AC為⊙O的直徑,DEAF

∴∠ADC90°,∠DEA90°

∴∠ADC=∠AED,

∴在ACDADE中,∠DAC=∠EAD,∠ADC=∠AED,

∴△ACD∽△ADE,

AD2AEAC

AC2OA

AD22AEOA;

3)過(guò)點(diǎn)OOMAB于點(diǎn)M,則四邊形ODEM為矩形,設(shè)DEOMx,則AE4x

AM5﹣(4x)=1+x,

RtAMO中,OA2AM2+OM2,即:(1+x2+x252

解得:x13,x2=﹣4(舍去).

AM4

OMAB,由垂徑定理得:AB2AM8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù))的圖象交于兩點(diǎn).

1)求的值;

2)求出一次函數(shù)與反比例函數(shù)的表達(dá)式;

3)過(guò)點(diǎn)軸的垂線,與直線和函數(shù))的圖象的交點(diǎn)分別為點(diǎn),,當(dāng)點(diǎn)在點(diǎn)下方時(shí),寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1是無(wú)障礙通道,圖2是其截面示意圖,已知坡角∠BAC=30°,斜坡AB=4m,∠ACB=90°.現(xiàn)要對(duì)坡面進(jìn)行改造,使改造后的坡角∠BDC=26.5°,需要把水平寬度AC增加多少m(結(jié)果精確到0.1)?(參考數(shù)據(jù):≈1.73,sin26.5°≈0.45,cos26.5°≈0.90,tan26.5°≈0.50

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)AC分別在x軸、y軸的正半軸上,且ABy軸,AB4,△ABC的面積為2,將△ABC以點(diǎn)B為旋轉(zhuǎn)中心,順時(shí)針旋轉(zhuǎn)90°得到△DBE,一反比例函數(shù)圖象恰好過(guò)點(diǎn)D時(shí),則此反比例函數(shù)解析式是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Q為正方形ABCD外一點(diǎn),連接BQ,過(guò)點(diǎn)DDQBQ,垂足為Q,G、K分別為AB、BC上的點(diǎn),連接AK、DG,分別交BQF、EAKDG,垂足為點(diǎn)H,AF5,DH8,FBQ中點(diǎn),M為對(duì)角線BD的中點(diǎn),連接HM并延長(zhǎng)交正方形于點(diǎn)N,則HN的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)均為1的方格紙中有線段ABCD,點(diǎn)AB、CD均在小正方形的頂點(diǎn)上.

1)畫出一個(gè)以AB為一邊的△ABE,點(diǎn)E在小正方形的頂點(diǎn)上,且∠BAE45°,△ABE的面積為;

2)畫出以CD為一腰的等腰△CDF,點(diǎn)F在小正方形的頂點(diǎn)上,且△CDF的面積為;

3)在(1)、(2)的條件下,連接EF,請(qǐng)直接寫出線段EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線軸于點(diǎn),,交軸的負(fù)半軸于,頂點(diǎn)為.下列結(jié)論:①;②;③當(dāng)時(shí),;④當(dāng)是等腰直角三角形時(shí),則;⑤若是一元二次方程的兩個(gè)根,且,則.其中錯(cuò)誤的有( )個(gè).

A.5B.4C.3D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,是一張放在平面直角坐標(biāo)系中的紙片,點(diǎn)與原點(diǎn)重合,點(diǎn)軸的正半軸上,點(diǎn)軸的正半軸上.已知,.將紙片的直角部分翻折,使點(diǎn)落在邊上,記為點(diǎn),為折痕,點(diǎn)軸上.

1)在如圖所示的直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,________,________;

2)線段上有一動(dòng)點(diǎn)(不與點(diǎn)重合)自點(diǎn)沿方向以每秒個(gè)單位長(zhǎng)度向點(diǎn)做勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為,過(guò)點(diǎn)于點(diǎn),過(guò)點(diǎn)于點(diǎn),求四邊形的面積與時(shí)間之間的函數(shù)表達(dá)式.當(dāng)取何值時(shí),有最大值?最大值是多少?

3)當(dāng)為何值時(shí),,三點(diǎn)構(gòu)成一個(gè)等腰三角形?并求出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,AE∠BAC的平分線,∠ABC的平分線 BMAE于點(diǎn)M,點(diǎn)OAB上,以點(diǎn)O為圓心,OB的長(zhǎng)為半徑的圓經(jīng)過(guò)點(diǎn)M,交BC于點(diǎn)G,交 AB于點(diǎn)F

1)求證:AE⊙O的切線.

2)當(dāng)BC=8AC=12時(shí),求⊙O的半徑.

3)在(2)的條件下,求線段BG的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案