【題目】在平面直角坐標(biāo)系中,以原點(diǎn)O為圓心的圓過點(diǎn)A(0,3),直線y=kx﹣3k+4與⊙O交于B、C兩點(diǎn),則弦BC的長的最小值為( 。
A. 5 B. 2 C. 3 D. 4
【答案】D
【解析】
根據(jù)直線y=kx-3k+4必過點(diǎn)D(3,4),求出最短的弦CB是過點(diǎn)D且與該圓直徑垂直的弦,再求出OD的長,再根據(jù)以原點(diǎn)O為圓心的圓過點(diǎn)A(0,3),求出OB的長,再利用勾股定理求出BD,即可得出答案.
解:∵直線y=kx-3k+4必過點(diǎn)D(3,4),
∴最短的弦CB是過點(diǎn)D且與該圓直徑垂直的弦,
∵點(diǎn)D的坐標(biāo)是(3,4),
∴OD=5,
∵以原點(diǎn)O為圓心的圓過點(diǎn)A(0,3),
∴圓的半徑為3,
∴OB=3,
∴BD==2,
∴BC的長的最小值為4;
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AD邊的中點(diǎn),BE⊥AC于點(diǎn)F,連接DF,分析下列五個(gè)結(jié)論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S四邊形CDEF=S△ABF,其中正確的結(jié)論有________個(gè)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖分別是兩根木棒及其影子的情形.
(1)哪個(gè)圖反映了太陽光下的情形?哪個(gè)圖反映了路燈下的情形?
(2)在太陽光下,已知小明的身高是1.8米,影長是1.2米,旗桿的影長是4米,求旗桿的高;
(3)請?jiān)趫D中分別畫出表示第三根木棒的影長的線段.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明投資銷售一種進(jìn)價(jià)為每件20元的護(hù)眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):y=﹣10x+500,在銷售過程中銷售單價(jià)不低于成本價(jià),而每件的利潤不高于成本價(jià)的60%.
(1)設(shè)小明每月獲得利潤為w(元),求每月獲得利潤w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍.
(2)當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤?每月的最大利潤是多少?
(3)如果小明想要每月獲得的利潤不低于2000元,那么小明每月的成本最少需要多少元?(成本=進(jìn)價(jià)×銷售量)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD的對角線AC,BD相交于點(diǎn)O,直角∠MPN的頂點(diǎn)P與點(diǎn)O重合,直角邊PM,PN分別與OA,OB重合,然后逆時(shí)針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點(diǎn),連接EF交OB于點(diǎn)G,則下列結(jié)論中正確的是_____.
(1)EF=OE;(2)S四邊形OEBF:S正方形ABCD=1:4;(3)在旋轉(zhuǎn)過程中,當(dāng)△BEF與△COF的面積之和最大時(shí),AE=;(4)OGBD=AE2+CF2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AD是△ABC的角平分線,⊙O經(jīng)過A、B、D三點(diǎn),過點(diǎn)B作BE∥AD,交⊙O于點(diǎn)E,連接ED.
(1)求證:ED∥AC;
(2)連接AE,試證明:ABCD=AEAC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一次軍事演習(xí)中,藍(lán)方在一條東西走向的公路上的A處朝正南方向撤退,公路上距A處45千米的紅方在B處沿南偏西67°方向前進(jìn)實(shí)施攔截.紅方行駛26千米到達(dá)C處后,因前方無法通行,紅方?jīng)Q定調(diào)整方向,再朝南偏西37°方向前進(jìn),剛好在D處成功攔截藍(lán)方.求攔截點(diǎn)D處到公路的距離AD.(參考數(shù)據(jù):sin67°≈ ,cos67°≈ ,tan67°≈ ,sin37°≈ ,cos37°≈ ,tan37°≈ )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)場去年種植了10畝地的南瓜,畝產(chǎn)量為2000kg,根據(jù)市場需要,今年該農(nóng)場擴(kuò)大了種植面積,并且全部種植了高產(chǎn)的新品種南瓜,設(shè)南瓜種植面積的增長率為x.
(1)則今年南瓜的種植面積為 畝;(用含x的代數(shù)式表示)
(2)如果今年南瓜畝產(chǎn)量的增長率是種植面積的增長率的,今年南瓜的總產(chǎn)量為60000kg,求南瓜畝產(chǎn)量的增長率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓心都在x軸正半軸上的半圓O1,半圓O2,…,半圓On與直線l相切.設(shè)半圓O1,半圓O2,…,半圓On的半徑分別是r1,r2,…,rn,則當(dāng)直線l與x軸所成銳角為30°,且r1=1時(shí),r2018=_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com