【題目】如圖,在平面直角坐標系中,二次函數y=﹣x2+bx+c的圖象與x軸交于A、B兩點,A點的坐標為(﹣3,0),B點在原點的左側,與y軸交于點C(0,3),點P是直線BC上方的拋物線上一動點
(1)求這個二次函數的表達式;
(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C(如圖1所示),那么是否存在點P,使四邊形POP′C為菱形?若存在,請此時點P的坐標:若不存在,請說明理由;
(3)當點P運動到什么位置時,四邊形ABCP的面積最大,并求出其最大值.
【答案】(1)y=﹣x2﹣2x+3;(2)存在.P點的坐標為(﹣,);(3)P點的坐標為(﹣,),四邊形ABPC的面積的最大值為.
【解析】
(1)利用待定系數法直接將B、C兩點直接代入y=x2+bx+c求解b,c的值即可得拋物線解析式;
(2)利用菱形對角線的性質及折疊的性質可以判斷P點的縱坐標為﹣,令y=﹣即可得x2﹣2x﹣3=﹣,解該方程即可確定P點坐標;
(3)由于△ABC的面積為定值,當四邊形ABCP的面積最大時,△BPC的面積最大;過P作y軸的平行線,交直線BC于Q,交x軸于F,易求得直線AC的解析式,可設出P點的橫坐標,然后根據拋物線和直線BC的解析式求出Q、P的縱坐標,即可得到PQ的長,以PQ為底,B點橫坐標的絕對值為高即可求得△BPC的面積,由此可得到關于四邊形ABCP的面積與P點橫坐標的函數關系式,根據函數的性質即可求出四邊形ABCP的最大面積及對應的P點坐標.
(1)∵C點坐標為(0,3),
∴y=﹣x2+bx+3,
把A(﹣3,0)代入上式得,0=9﹣3b+3,
解得,b=﹣2,
∴該二次函數解析式為:y=﹣x2﹣2x+3;
(2)存在.如圖1,
設P點的坐標為(x,﹣x2﹣2x+3),PP′交CO于E,
當四邊形POP'C為菱形時,則有PC=PO,連接PP′,則PE⊥CO于E,
∴OE=CE=,
令﹣x2﹣2x+3=,
解得,x1=﹣,x2=(不合題意,舍去).
∴P點的坐標為(﹣,).
(3)如圖2,過點P作y軸的平行線與BC交于點Q,與OA交于點F,
設P(x,﹣x2﹣2x+3),設直線AC的解析式為:y=kx+t,
則,
解得:,
∴直線AC的解析式為y=x+3,
則Q點的坐標為(x,x+3),
當0=﹣x2﹣2x+3,
解得:x1=1,x2=﹣3,
∴AO=3,OB=1,則AB=4,
S四邊形ABCP=S△ABC+S△APQ+S△CPQ
=ABOC+QPOF+QPAF
=×4×3+[(﹣x2﹣2x+3)﹣(x+3)]×3
=﹣(x+)2+.
當x=﹣時,四邊形ABCP的面積最大,
此時P點的坐標為(﹣,),四邊形ABPC的面積的最大值為.
科目:初中數學 來源: 題型:
【題目】北盤江大橋坐落于云南宜威與貴州水城交界處,橫跨云貴兩省,為目前世界第一高橋圖1是大橋的實物圖,圖2是從圖1中引申出的平面圖,測得橋護欄BG=1.8米,拉索AB與護欄的夾角是26°,拉索ED與護欄的夾角是60°,兩拉索底端距離BD為300m,若兩拉索頂端的距離AE為90m,請求出立柱AH的長.(tan26°≈0.5,sin26°≈0.4,1.7)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一次函數y=kx﹣1的圖象經過點P,且y的值隨x值的增大而增大,則點P的坐標可以為( 。
A. (﹣5,3) B. (1,﹣3) C. (2,2) D. (5,﹣1)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,OA、OB是⊙O的兩條半徑,OA⊥OB,C是半徑OB上一動點,連接AC并延長交⊙O于D,過點D作圓的切線交OB的延長線于E,已知OA=6.
(1)求證:∠ECD=∠EDC;
(2)若BC=2OC,求DE長;
(3)當∠A從15°增大到30°的過程中,求弦AD在圓內掃過的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a≠0)的圖象的對稱軸是直線x=1,其圖象的一部分如圖所示.下列說法錯誤的是
A. abc<0B. a﹣b+c<0C. 3a+c<0D. 當﹣1<x<3時,y>0
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(本題滿分8分)
為了加強學生課外閱讀,開闊視野,某校開展了“書香校園,從我做起”的主題活動.學校隨機抽取了部分學生,對他們一周的課外閱讀時間進行調查,繪制出頻數分布表和頻數分布直方圖的一部分如下:
請根據圖表信息回答下列問題:
(1)頻數分布表中的 , ;
(2)將頻數分布直方圖補充完整;
(3)學校將每周課外閱讀時間在小時以上的學生評為“閱讀之星”,請你估計該校名學生中評為“閱讀之星”的有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,正方形A1B1C1D1,D1E1E2B2,A2D2C2D2,D2E3E4B3,A3B3C3D3,…,按如圖所示的方式放置,其中點B1在y軸上,點C1,E1,E2,C2,E3,E4,C3,…,在x軸上已知正方形A1,B1,C1,D1,的邊長為1,∠OB1C1=30°,B1C1∥B2C2∥B3C3,…,則正方形AnBnnDn的邊長是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,二次函數y=ax2+bx+的圖象經過點A(2,6)和B(4,4),直線l經過點B并與x軸垂直,垂足為Q.
(1)求二次函數的表達式;
(2)如圖1,作AK⊥x軸,垂足為K,連接AO,點R是直線1上的點,如果△AOK與以O,Q,R為頂點的三角形相似,請直接寫出點R的縱坐標;
(3)如圖2,正方形CDEF的頂點C是第二象限拋物線上的點,點D,E在直線1上,以CF為底向右做等腰△CFM,直線l與CM,FM的交點分別是G,H,并且CG=GM,FH=HM,連接CE,與FM的交點為N,且點N的縱坐標是﹣1.
求:①tan∠DCG的值;
②點C的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司每月生產產品A4萬件和同類新型產品B若干萬件.產品A每件銷售利潤為200元,且在產品B銷售量每月不超過3萬件時,每月4萬件產品A能全部銷售,產品B的每月銷售量y(萬件)與每件銷售利潤x(元)之間的函數關系圖象如圖所示.
(1)求y與x的函數關系式;
(2)在保證A產品全部銷售的情況下,產品B每件利潤定為多少元時公司銷售產品A和產品B每月可獲得總利潤w1(萬元)最大?
(3)在不要求產品A全部銷售的情況下,已知受產品B銷售價的影響產品A每月銷售量:(萬件)與x(元)之間滿足關系z=0.024x﹣3.2,那么產品B每件利潤定為多少元時,公司每月可獲得最大的利潤?并求最大總利潤w2(萬元).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com