【題目】如圖,將Rt△ABO放在平面直角坐標(biāo)系中,點(diǎn)A、B分別在y軸、x軸上,∠BAO=30°,BC是∠ABO的角平分線,交y軸于點(diǎn)C(0,﹣2),CD⊥AB,垂足為D
(1)求BC的長(zhǎng)度.
(2)點(diǎn)P(0,n)是線段AO上的任意一點(diǎn)(點(diǎn)P不與A、C、O重合),以BP為邊,在BD的下方畫(huà)出∠BPE=60°,PE交CD的延長(zhǎng)線于點(diǎn)E,在備用圖中畫(huà)出圖形,并求CE的長(zhǎng)(用含n的式子表示).
【答案】(1)BC=4;(2) EC=2﹣n.
【解析】
(1)根據(jù)已知條件可知OC=2, Rt△BOC中,∠OBC=∠DBC=30°,BC=2OC即可得出答案;(2)分兩種情況,當(dāng)點(diǎn)P在線段OC上時(shí),在BC上取一點(diǎn)F,使得PF=PC。證明△PCF是等邊三角形,得出∠PCE=∠PFB=120°,然后證明△EPC≌△BPF,得到CE=FB,再根據(jù)P點(diǎn)的坐標(biāo)知道0P=-n,,PC=CF=2-(-n)=2+n,CE=BF=BC-CF計(jì)算即可;當(dāng)點(diǎn)P在線段AC上時(shí),在BC的延長(zhǎng)線上取一點(diǎn)G,使得PG=CP,同理可證. △PCG是等邊三角形, △EPC≌△BPG,可得出CE=GB=BC+CF,再代入n計(jì)算即可.
(1)∵點(diǎn)C(0,﹣2),
∴OC=2,
在Rt△ABO中,∵∠BAO=30°,BC是∠ABO的平分線,∠BOC=90°,
∴∠OBC=∠DBC=30°,
∴BC=2OC=4.
(2)∵P(0,n),
∴OP=﹣n,
①如圖1中,當(dāng)點(diǎn)P在線段OC上時(shí),在BC上取一點(diǎn)F,使得PF=PC.
∵∠BOC=90°,CD⊥AB,∠OBC=∠DBC=30°,
∴∠BCO=∠BCE=60°,
∵PF=CF,
∴△PCF是等邊三角形,
∴∠PFC=∠FPC=60°,PC=CF,
∴∠BCO+∠BCE=180°﹣∠PFC,即∠PCE=∠PFB=120°,
∵∠FPC=∠BPE=60°,
∴∠EPC=∠BPF,
∴△EPC≌△BPF(ASA),
∴CE=FB,
∵OP=﹣n,
∴CF=PC=OC﹣OP=2+n,
∴CE=FB=BC﹣CF=4﹣(2+n)=2﹣n.
②當(dāng)點(diǎn)P在線段AC上時(shí),在BC的延長(zhǎng)線上取一點(diǎn)G,使得PG=CP.
∵∠BCO=∠BCE=60°,
∴∠PCG=∠BCO=60°,∠PCE=∠180°﹣60°﹣60°=60°,
∵PG=CP,
∴△PCG是等邊三角形,
∴∠PGC=∠GPC=60°,PC=CG,即∠PCE=∠PGB,
∵∠BPE=∠GPC=60°,
∴∠EPC=∠BPG,
∴△EPC≌△BPG(ASA),
∴CE=GB,
∵OP=﹣n,
∴CG=PC=OP﹣OC=﹣n﹣2,
∴CE=GB=BC+CF=4+(﹣n﹣2)=2﹣n,
綜上所述,EC=2﹣n.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn) C為線段 AB上一點(diǎn),分別以 AC、BC為邊在線段 AB同側(cè)作△ACD和△BCE,且 CA=CD,CB=CE,∠ACD=∠BCE,直線 AE與 BD交于點(diǎn) F
(1)如圖 1,若∠ACD=60°,則∠AFD=
(2)如圖 2,若∠ACD=α,則∠AFB= (用含α的式子表示),并說(shuō)明理由。
(3) 將圖 1 中的△ACD繞點(diǎn) C順時(shí)針旋轉(zhuǎn)如圖 3,連接 AE、AB、BD,∠ABD=80°,求∠EAB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知有兩輛玩具車進(jìn)行30米的直跑道比賽,兩車從起點(diǎn)同時(shí)出發(fā),A車到達(dá)終點(diǎn)時(shí),B車離終點(diǎn)還差12米,A車的平均速度為2.5米/秒.
(1)求B車的平均速度;
(2)如果兩車重新比賽,A車從起點(diǎn)退后12米,兩車能否同時(shí)到達(dá)終點(diǎn)?請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,若調(diào)整A車的平均速度,使兩車恰好同時(shí)到達(dá)終點(diǎn),求調(diào)整后A車的平均速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠1=∠2,若添加一個(gè)條件后,仍無(wú)法判定△ABC≌△ABD的是( )
A.∠3=∠4B.∠C=∠DC.BC=BDD.AC=AD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中∠ABC=90°,AC的垂直平分線交BC于D點(diǎn),交AC于E點(diǎn),OC=OD.
(1)若,DC=4,求AB的長(zhǎng);
(2)連接BE,若BE是△DEC的外接圓的切線,求∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是直角三角形,∠A=90°,AB=8cm,AC=6cm,點(diǎn)P從點(diǎn)A出發(fā),沿AB方向以2cm/s的速度向點(diǎn)B運(yùn)動(dòng);同時(shí)點(diǎn)Q從點(diǎn)A出發(fā),沿AC方向以1cm/s的速度向點(diǎn)C運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn),則另一個(gè)動(dòng)點(diǎn)也停止運(yùn)動(dòng),則△PAQ的最大面積是( 。
A. 8cm2 B. 9cm2 C. 16cm2 D. 18cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形MNPQ中,動(dòng)點(diǎn)R從點(diǎn)N出發(fā),沿著N-P-Q-M方向移動(dòng)至M停止,設(shè)R移動(dòng)路程為x,MNR面積為y,那么y與x的關(guān)系如圖②,下列說(shuō)法不正確的是( )
A.當(dāng)x=2時(shí),y=5B.矩形MNPQ周長(zhǎng)是18
C.當(dāng)x=6時(shí),y=10D.當(dāng)y=8時(shí),x=10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,斜邊AB的垂直平分線交AB于點(diǎn)D,交BC于點(diǎn)E,AE平分∠BAC,那么下列不成立的是( )
A.∠B=∠CAEB.∠DEA=∠CEAC.∠B=∠BAED.AC=2EC
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com