【題目】如圖在直角坐標(biāo)系中,已知A(0,a),B(b,0)C(3,c)三點(diǎn),若a,b,c滿足關(guān)系式:|a﹣2|+(b﹣3)2+=0.
(1)求a,b,c的值.
(2)求四邊形AOBC的面積.
(3)是否存在點(diǎn)P(x,﹣ x),使△AOP的面積為四邊形AOBC的面積的兩倍?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)a=2,b=3,c=4;(2)9;(3)存在點(diǎn)P(18,﹣9)或(﹣18,9),使△AOP的面積為四邊形AOBC的面積的兩倍.
【解析】
(1)根據(jù)“幾個(gè)非負(fù)數(shù)相加和為0,則每一個(gè)非負(fù)數(shù)的值均為0”解出a,b,c的值;
(2)由點(diǎn)A、O、B、C的坐標(biāo)可得四邊形AOBC為直角梯形,根據(jù)直角梯形的面積公式計(jì)算即可;
(3)設(shè)存在點(diǎn)P(x,﹣ x),使△AOP的面積為四邊形AOBC的面積的兩倍.根據(jù)面積列出方程×2×|x|=|x|=2×9,解方程即可.
解:(1)∵|a﹣2|+(b﹣3)2+=0,
∴a﹣2=0,b﹣3=0,c﹣4=0,
∴a=2,b=3,c=4;
(2)∵A(0,2),O(0,0),B(3,0),C(3,4);
∴四邊形AOBC為直角梯形,且OA=2,BC=4,OB=3,
∴四邊形AOBC的面積=×(OA+BC)×OB=×(2+4)×3=9;
(3)設(shè)存在點(diǎn)P(x,﹣ x),使△AOP的面積為四邊形AOBC的面積的兩倍.
∵△AOP的面積=×2×|x|=|x|,
∴|x|=2×9,
∴x=±18
∴存在點(diǎn)P(18,﹣9)或(﹣18,9),
使△AOP的面積為四邊形AOBC的面積的兩倍.
故答案為:(1)a=2,b=3,c=4;(2)9;(3)存在點(diǎn)P(18,﹣9)或(﹣18,9),使△AOP的面積為四邊形AOBC的面積的兩倍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程k2x2﹣2(k+1)x+1=0有兩個(gè)實(shí)數(shù)根.
(1)求k的取值范圍;
(2)當(dāng)k=1時(shí),設(shè)所給方程的兩個(gè)根分別為x1和x2,求(x1﹣2)(x2﹣2)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:⊙O的直徑AB與弦AC的夾角∠A=30°,AC=CP.
(1) 求證:CP是⊙O的切線;
(2) 若PC=6,AB=4,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,AE平分∠BAD,交BC于點(diǎn)E,BF平分∠ABC,交AD于點(diǎn)F,AE與BF交于點(diǎn)P,連接EF,PD.
(1)求證:四邊形ABEF是菱形;
(2)若AB=4,AD=6,∠ABC=60°,求tan∠DPF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AH⊥BC,BF平分∠ABC,BE⊥BF,EF∥BC,以下四個(gè)結(jié)論①AH⊥EF,②∠ABF=∠EFB,③AC∥BE,④∠E=∠ABE.正確的是( )
A. ①②③④ B. ①② C. ①③④ D. ①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)A、C、D在⊙O上,BP是⊙O的切線,連接PD并延長(zhǎng)交⊙O于F、交AB于E,若∠BPF=∠ADC.
(1)判斷直線PF與AC的位置關(guān)系,并說(shuō)明你的理由;
(2)當(dāng)⊙O的半徑為5,tan∠P=,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小劉對(duì)本班同學(xué)的業(yè)余興趣愛好進(jìn)行了一次調(diào)查,她根據(jù)采集到的數(shù)據(jù),繪制了下面的圖1和圖2.
請(qǐng)你根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)在圖1中,將“書畫”部分的圖形補(bǔ)充完整;
(2)在圖2中,求出“球類”部分所對(duì)應(yīng)的圓心角的度數(shù),并分別寫出愛好“音樂(lè)”、“書畫”、“其它”的人數(shù)占本班學(xué)生數(shù)的百分?jǐn)?shù);
(3)觀察圖1和圖2,你能得出哪些結(jié)論(只要寫出一條結(jié)論).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y1=x+b與雙曲線y2=交于點(diǎn)A(1,4)和點(diǎn)B,經(jīng)過(guò)點(diǎn)A的另一條直線與雙曲線y2=交于點(diǎn)C.則:
①直線AB的解析式為y1=x+3;
②B(﹣1,﹣4);
③當(dāng)x>1時(shí),y2<y1;
④當(dāng)AC的解析式為y=4x時(shí),△ABC是直角三角形.
其中正確的是 .(把所有正確結(jié)論的序號(hào)都寫在橫線上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,O為坐標(biāo)系原點(diǎn),A(3,0),B(3,1),C(0,1),將△OAB沿直線OB折疊,使得點(diǎn)A落在點(diǎn)D處,OD與BC交于點(diǎn)E,則OD所在直線的解析式為( 。
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com