【題目】淮河汛期即將來(lái)臨,防汛指揮部在一危險(xiǎn)地帶兩岸各安置了-探照燈,便于夜間查看河面及兩岸河堤的情況.如圖,燈射線自順時(shí)針旋轉(zhuǎn)至便立即回轉(zhuǎn),燈射線自順時(shí)針旋轉(zhuǎn)至便立即回轉(zhuǎn),兩燈不停交叉照射巡視.若燈轉(zhuǎn)動(dòng)的速度是/秒,燈轉(zhuǎn)動(dòng)的速度是/秒,且滿足:是的整數(shù)部分,是不等式的最小整數(shù)解.假定這- -帶淮河兩岸河堤是平行的,即,且 .
(1)如圖1,_____, ;
(2)若燈射線先轉(zhuǎn)動(dòng)秒,燈射線才開(kāi)始轉(zhuǎn)動(dòng),在燈射線到達(dá)之前,燈轉(zhuǎn)動(dòng)幾秒,兩燈的光東互相平行?
(3)如圖2,兩燈同時(shí)轉(zhuǎn)動(dòng),在燈A射線到達(dá)AN之前。若射出的光束交于點(diǎn)C,過(guò)C作CD⊥AC交PQ于點(diǎn)D,則在轉(zhuǎn)動(dòng)過(guò)程中,∠BAC與∠BCD的數(shù)量關(guān)系是否發(fā)生變化?若不變,請(qǐng)求出其數(shù)量關(guān)系;若改變,請(qǐng)求出其取值范圍.
【答案】(1)3,1;(2)當(dāng)秒或秒時(shí),兩燈的光東互相平行;(3)∠BCD:∠BAC =2:3.
【解析】
(1)根據(jù)a是的整數(shù)部分,可得a=2+1=3,根據(jù)b是不等式的最小整數(shù)解,可得b的值;
(2)設(shè)A燈轉(zhuǎn)動(dòng)t秒,兩燈的光束互相平行,分兩種情況進(jìn)行討論:①在燈A射線轉(zhuǎn)到AN之前,②在燈A射線轉(zhuǎn)到AN之后,分別求得t的值即可;
(3)設(shè)燈A射線轉(zhuǎn)動(dòng)時(shí)間為t秒,根據(jù)∠BAC=45°-(180°-3t)=3t-135°,∠BCD=90°-∠BCA=90°-(180°-2t)=2t-90°,可得∠BCD:∠BAC的值.
解:(1)a是的整數(shù)部分,可得a=2+1=3,根據(jù)b是不等式,解得,即x得最小整數(shù)解為1,故a=3,b=1.
(2)設(shè)燈轉(zhuǎn)動(dòng)秒,兩燈的光東互相平行,
①在燈射線轉(zhuǎn)到之前,解得l = 15,
②在燈射線轉(zhuǎn)到之后, ,解得,
綜上所述,當(dāng)秒或秒時(shí),兩燈的光東互相平行;
(3)設(shè)燈A射線轉(zhuǎn)動(dòng)時(shí)間為t秒,
∵∠CAN=180°3t,
∴∠BAC=45°(180°3t)=3t135°,
又∵PQ∥MN,
∴∠BCA=∠CBD+∠CAN=t+180°3t=180°2t,
而∠ACD=90°,
∴∠BCD=90°∠BCA=90°(180°2t)=2t90°,
∴∠BAC:∠BCD=3:2,
即2∠BAC=3∠BCD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AC與BD相交于點(diǎn)O.若 AO=3,∠OBC=30°,求矩形的周長(zhǎng)和面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A,B兩點(diǎn)的坐標(biāo)分別為A,B(2,0),直線AB與反比例函數(shù)的圖像交與點(diǎn)C和點(diǎn)D(-1,a).
(1)求直線AB和反比例函數(shù)的解析式;
(2)求∠ACO的度數(shù);
(3)將△OBC繞點(diǎn)O逆時(shí)針?lè)较蛐D(zhuǎn)α角(α為銳角),得到△OB′C′,當(dāng)α為多少度時(shí)OC′⊥AB,并求此時(shí)線段AB′的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,彈性小球從P(2,0)出發(fā),沿所示方向運(yùn)動(dòng),每當(dāng)小球碰到正方形OABC的邊時(shí)反彈,反彈時(shí)反射角等于入射角,當(dāng)小球第一次碰到正方形的邊時(shí)的點(diǎn)為P1,第二次碰到正方形的邊時(shí)的點(diǎn)為P2…,第n次碰到正方形的邊時(shí)的點(diǎn)為Pn,則P2020的坐標(biāo)是( 。
A.(5,3)B.(3,5)C.(0,2)D.(2,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)計(jì)劃購(gòu)進(jìn)A、B兩種新型節(jié)能臺(tái)燈,已知B型節(jié)能臺(tái)燈每盞進(jìn)價(jià)比A型的多40元,且用3000元購(gòu)進(jìn)的A型節(jié)能臺(tái)燈與用5000元購(gòu)進(jìn)的B型節(jié)能臺(tái)燈的數(shù)量相同.
(1)求每盞A型節(jié)能臺(tái)燈的進(jìn)價(jià)是多少元?
(2)商場(chǎng)將購(gòu)進(jìn)A、B兩型節(jié)能臺(tái)燈100盞進(jìn)行銷售,A型節(jié)能臺(tái)燈每盞的售價(jià)為90元,B型節(jié)能臺(tái)燈每盞的售價(jià)為140元,且B型節(jié)能臺(tái)燈的進(jìn)貨數(shù)量不超過(guò)A型節(jié)能臺(tái)燈數(shù)量的2倍.應(yīng)怎樣進(jìn)貨才能使商場(chǎng)在銷售完這批臺(tái)燈時(shí)利最多?此時(shí)利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題:將邊長(zhǎng)為的正三角形的三條邊分別等分,連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形中邊長(zhǎng)為1的正三角形和邊長(zhǎng)為2的正三角形分別有多少個(gè)?
探究:要研究上面的問(wèn)題,我們不妨先從最簡(jiǎn)單的情形入手,進(jìn)而找到一般性規(guī)律.
探究一:將邊長(zhǎng)為2的正三角形的三條邊分別二等分,連接各邊中點(diǎn),則該三角形中邊長(zhǎng)為1的正三角形和邊長(zhǎng)為2的正三角形分別有多少個(gè)?
如圖①,連接邊長(zhǎng)為2的正三角形三條邊的中點(diǎn),從上往下看:
邊長(zhǎng)為1的正三角形,第一層有1個(gè),第二層有3個(gè),共有個(gè);
邊長(zhǎng)為2的正三角形一共有1個(gè).
探究二:將邊長(zhǎng)為3的正三角形的三條邊分別三等分,連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形中邊長(zhǎng)為1的正三角形和邊長(zhǎng)為2的正三角形分別有多少個(gè)?
如圖②,連接邊長(zhǎng)為3的正三角形三條邊的對(duì)應(yīng)三等分點(diǎn),從上往下看:邊長(zhǎng)為1的正三角形,第一層有1個(gè),第二層有3個(gè),第三層有5個(gè),共有個(gè);邊長(zhǎng)為2的正三角形共有個(gè).
探究三:將邊長(zhǎng)為4的正三角形的三條邊分別四等分(圖③),連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形中邊長(zhǎng)為1的正三角形和邊長(zhǎng)為2的正三角形分別有多少個(gè)?
(仿照上述方法,寫出探究過(guò)程)
結(jié)論:將邊長(zhǎng)為的正三角形的三條邊分別等分,連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形中邊長(zhǎng)為1的正三角形和邊長(zhǎng)為2的正三角形分別有多少個(gè)?
(仿照上述方法,寫出探究過(guò)程)
應(yīng)用:將一個(gè)邊長(zhǎng)為25的正三角形的三條邊分別25等分,連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形中邊長(zhǎng)為1的正三角形有______個(gè)和邊長(zhǎng)為2的正三角形有______個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】春節(jié)前小明花1200元從市場(chǎng)購(gòu)進(jìn)批發(fā)價(jià)分別為每箱30元與50元的、兩種水果進(jìn)行銷售,分別以每箱35元與60元的價(jià)格出售,設(shè)購(gòu)進(jìn)水果箱,水果箱.
(1)求關(guān)于的函數(shù)表達(dá)式;
(2)若要求購(gòu)進(jìn)水果的數(shù)量不少于水果的數(shù)量,則應(yīng)該如何分配購(gòu)進(jìn)、水果的數(shù)量并全部售出才能獲得最大利潤(rùn),此時(shí)最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】開(kāi)學(xué)初,李芳和王平去文具店購(gòu)買學(xué)習(xí)用品,李芳用18元錢買了1支鋼筆和3本筆記本;王平用30元買了同樣的鋼筆2支和筆記本4本.
(1)求每支鋼筆和每本筆記本的價(jià)格;
(2)校運(yùn)會(huì)后,班主任拿出200元學(xué)校獎(jiǎng)勵(lì)基金交給班長(zhǎng),購(gòu)買上述價(jià)格的鋼筆筆記本共36件作為獎(jiǎng)品,獎(jiǎng)給校運(yùn)會(huì)中表現(xiàn)突出的同學(xué),要求筆記本數(shù)不多于鋼筆數(shù)的2倍,共有多少種購(gòu)買方案?請(qǐng)你一一寫出.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,直線y1=2x﹣2與坐標(biāo)軸交于A,B兩點(diǎn),與雙曲線y2=(x>0)交于點(diǎn)C,過(guò)點(diǎn)C作CD⊥x軸,垂足為D,且OA=AD,則以下結(jié)論:①當(dāng)x>0時(shí),y1隨x的增大而增大,y2隨x的增大而減小;②;③當(dāng)0<x<2時(shí),y1<y2;④如圖,當(dāng)x=4時(shí),EF=4.其中正確結(jié)論的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com