【題目】在△ABC中,AC=6,AB=14,BC=16,點D是△ABC的內(nèi)心,過D作DE∥AC交BC于E,則DE的長為( )
A.B.C.D.
【答案】C
【解析】
過點B作BH∥AC,交AD的延長線于點H,由內(nèi)心的性質(zhì)可證AB=BH=14,DE=EC,通過證明△ACF∽△HBF,可求CF的長,通過證明△DEF∽△ACF,可求DE的長.
解:如圖,過點B作BH∥AC,交AD的延長線于點H,
∵點D是△ABC的內(nèi)心,
∴∠BAD=∠CAD,∠ACD=∠DCB,
∵DE∥AC,BH∥AC,
∴∠H=∠DAC,∠EDC=∠ACD,
∴∠H=∠BAD,∠EDC=∠ECD,
∴AB=BH=14,DE=EC,
∵BH∥AC,
∴△ACF∽△HBF,
∴,
∴
∴CF=,
∵DE∥AC,
∴△DEF∽△ACF,
∴,
∴
∴DE=,
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班的同學(xué)想測量一教樓AB的高度.如圖,大樓前有一段斜坡,已知的長為16米,它的坡度.在離點45米的處,測得一教樓頂端的仰角為,則一教樓的高度約( )米(結(jié)果精確到0.1米)(參考數(shù)據(jù):,,,)
A. 44.1 B. 39.8 C. 36.1 D. 25.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,分別沿長方形紙片ABCD和正方形紙片EFGH的對角線AC,EG剪開,拼成如圖2所示的ALMN,若中間空白部分四邊形OPQR恰好是正方形,且ALMN的面積為50,則正方形EFGH的面積為( 。
A. 24 B. 25 C. 26 D. 27
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點是原點,四邊形是矩形,點,點.以點為中心,順時針旋轉(zhuǎn)矩形,得到矩形,點的對應(yīng)點分別為.
(1)如圖①,當(dāng)點落在邊上時,求點的坐標(biāo);
(2)如圖②,當(dāng)點落在線段上時,與交于點.求點的坐標(biāo);
(3)記為矩形對角線的交點,為的面積,求的取值范圍(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標(biāo)系,一條圓弧經(jīng)過網(wǎng)格點A、B、C,請在網(wǎng)格中進(jìn)行下列操作:
(1)在圖中確定該圓弧所在圓的圓心D點的位置,并寫出點D點坐標(biāo)為________.
(2)連接AD、CD,求⊙D的半徑及的長;
(3)有一點E(6,0),判斷點E與⊙D的位置關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線交 y軸于點為A,頂點為D,對稱軸與x軸交于點H.
(1)求頂點D的坐標(biāo)(用含m的代數(shù)式表示);
(2)當(dāng)拋物線過點(1,-2),且不經(jīng)過第一象限時,平移此拋物線到拋物線的位置,求平移的方向和距離;
(3)當(dāng)拋物線頂點D在第二象限時,如果∠ADH=∠AHO,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,AD=3,點E是邊CD的中點,點P,Q分別是射線DC與射線EB上的動點,連結(jié)PQ,AP,BP,設(shè)DP=t,EQ=t.
(1)當(dāng)點P在線段DE上(不包括端點)時.
①求證:AP=PQ;②當(dāng)AP平分∠DPB時,求△PBQ的面積.
(2)在點P,Q的運動過程中,是否存在這樣的t,使得△PBQ為等腰三角形?若存在,請求出t的值;若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是BC邊上的一點,BE=4,EC=8,將正方形邊AB沿AE折疊到AF,延長EF交DC于G,連接AG,現(xiàn)在有如下四個結(jié)論:①∠EAG=45°;②FG=FC;③FC∥AG;④S△GFC=14.其中結(jié)論正確的序號是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com