【題目】已知二次函數(shù)y=﹣x2+x+6及一次函數(shù)y=x+m,將該二次函數(shù)在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個(gè)新圖象(如圖所示),當(dāng)直線y=x+m與這個(gè)新圖象有四個(gè)交點(diǎn)時(shí),m的取值范圍是_____.
【答案】﹣7<m<﹣3.
【解析】
如圖,解方程﹣x2+x+6=0得A(﹣2,0),B(3,0),再利用折疊的性質(zhì)求出折疊部分的解析式為y=(x+2)(x﹣3),即y=x2﹣x﹣6(﹣2≤x≤3),然后求出直線y=x+m經(jīng)過(guò)點(diǎn)A(﹣2,0)時(shí)m的值和當(dāng)直線y=x+m與拋物線y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共點(diǎn)時(shí)m的值,從而得到當(dāng)直線y=x+m與新圖象有4個(gè)交點(diǎn)時(shí),m的取值范圍.
解:如圖所示,過(guò)點(diǎn)B作直線y=x+m1,將直線向下平移到恰在點(diǎn)C處相切,
則一次函數(shù)y=x+m在兩條直線之間時(shí),兩個(gè)圖象有4個(gè)交點(diǎn),
令y=﹣x2+x+6=0,解得:x=﹣2或3,即點(diǎn)B坐標(biāo)(3,0),
翻折拋物線的表達(dá)式為:y=(x﹣3)(x+2)=x2﹣x﹣6(﹣2≤x≤3),
將一次函數(shù)與二次函數(shù)表達(dá)式聯(lián)立并整理得:x2﹣2x﹣6﹣m=0,
△=b2﹣4ac=4+4(6+m)=0,解得:m=﹣7,
當(dāng)一次函數(shù)過(guò)點(diǎn)B時(shí),將點(diǎn)B坐標(biāo)代入:y=x+m得:0=3+m,解得:m=﹣3,
所以當(dāng)直線y=x+m與這個(gè)新圖象有四個(gè)交點(diǎn)時(shí),m的取值范圍是﹣7<m<﹣3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為直線x=﹣1,且拋物線經(jīng)過(guò)A(1,0),C(0,3)兩點(diǎn),與x軸交于點(diǎn)B.
(1)若直線y=mx+n經(jīng)過(guò)B、C兩點(diǎn),求直線BC和拋物線的解析式;
(2)在拋物線的對(duì)稱(chēng)軸x=﹣1上找一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,求出點(diǎn)M的坐標(biāo);
(3)設(shè)點(diǎn)P為拋物線的對(duì)稱(chēng)軸x=﹣1上的一個(gè)動(dòng)點(diǎn),求使△BPC為直角三角形的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,m,n是一元二次方程x2+4x+3=0的兩個(gè)實(shí)數(shù)根,且|m|<|n|,拋物線y=x2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(m,0),B(0,n),如圖所示.
(1)求這個(gè)拋物線的解析式;
(2)設(shè)(1)中的拋物線與x軸的另一個(gè)交點(diǎn)為C,拋物線的頂點(diǎn)為D,試求出點(diǎn)C,D的坐標(biāo),并判斷△BCD的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD,點(diǎn)O是邊BC的中點(diǎn),連接DO并延長(zhǎng),交AB的延長(zhǎng)線于點(diǎn)E,連接BD、EC.
(1)求證:四邊形BECD是平行四邊形;
(2)若∠BOD=100°,則當(dāng)∠A= 時(shí),四邊形BECD是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)戶承包荒山種植某產(chǎn)品種蜜柚已知該蜜柚的成本價(jià)為8元千克,投入市場(chǎng)銷(xiāo)售時(shí),調(diào)查市場(chǎng)行情,發(fā)現(xiàn)該蜜柚銷(xiāo)售不會(huì)虧本,且每天銷(xiāo)量千克與銷(xiāo)售單價(jià)元千克之間的函數(shù)關(guān)系如圖所示.
求y與x的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍;
當(dāng)該品種蜜柚定價(jià)為多少時(shí),每天銷(xiāo)售獲得的利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過(guò)點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見(jiàn)解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OE∥AB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得與的長(zhǎng),然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱(chēng),現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,直線y=2x+2與x軸,y軸分別交于A,B兩點(diǎn),與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)M(a,4).
(1)求反比例函數(shù)y=(x>0)的表達(dá)式;
(2)若點(diǎn)C在反比例函數(shù)y=(x>0)的圖象上,點(diǎn)D在x軸上,當(dāng)四邊形ABCD是平行四邊形時(shí),求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校舉行“漢字聽(tīng)寫(xiě)”比賽,每位學(xué)生聽(tīng)寫(xiě)漢字39個(gè),比賽結(jié)束后隨機(jī)抽查部分學(xué)生的聽(tīng)寫(xiě)結(jié)果,以下是根據(jù)抽查結(jié)果繪制的統(tǒng)計(jì)圖的一部分.
根據(jù)以上信息解決下列問(wèn)題:
在統(tǒng)計(jì)表中,______,______,并補(bǔ)全條形統(tǒng)計(jì)圖.
扇形統(tǒng)計(jì)圖中“C組”所對(duì)應(yīng)的圓心角的度數(shù)是______.
若該校共有1120名學(xué)生,如果聽(tīng)寫(xiě)正確的個(gè)數(shù)少于24個(gè)定為不合格,請(qǐng)你估計(jì)這所學(xué)校本次比賽聽(tīng)寫(xiě)不合格的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)中東部地區(qū)霧霾天氣趨于嚴(yán)重,環(huán)境治理已刻不容緩.我市某電器商場(chǎng)根據(jù)民眾健康需要,代理銷(xiāo)售某種家用空氣凈化器,其進(jìn)價(jià)是200元/臺(tái).經(jīng)過(guò)市場(chǎng)銷(xiāo)售后發(fā)現(xiàn):在一個(gè)月內(nèi),當(dāng)售價(jià)是400元/臺(tái)時(shí),可售出200臺(tái),且售價(jià)每降低10元,就可多售出50臺(tái).若供貨商規(guī)定這種空氣凈化器售價(jià)不能低于300元/臺(tái),代理銷(xiāo)售商每月要完成不低于450臺(tái)的銷(xiāo)售任務(wù).
(1)試確定月銷(xiāo)售量y(臺(tái))與售價(jià)x(元/臺(tái))之間的函數(shù)關(guān)系式;并求出自變量x的取值范圍;
(2)當(dāng)售價(jià)x(元/臺(tái))定為多少時(shí),商場(chǎng)每月銷(xiāo)售這種空氣凈化器所獲得的利潤(rùn)w(元)最大?最大利潤(rùn)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com