某果園有100棵橘子樹,平均每一棵樹結(jié)600個橘子.根據(jù)經(jīng)驗估計,每多種一顆樹,平均每棵樹就會少結(jié)5個橘子.設果園增種x棵橘子樹,果園橘子總個數(shù)為y個,則果園里增種______棵橘子樹,橘子總個數(shù)最多.
假設果園增種x棵橘子樹,那么果園共有(x+100)棵橘子樹,
∵每多種一棵樹,平均每棵樹就會少結(jié)5個橘子,
∴這時平均每棵樹就會少結(jié)5x個橘子,
則平均每棵樹結(jié)(600-5x)個橘子.
∵果園橘子的總產(chǎn)量為y,
∴則y=(x+100)(600-5x)
=-5x2+100x+60000,
∴當x=-
b
2a
=-
100
2×(-5)
=10(棵)時,橘子總個數(shù)最多.
故答案為:10.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖①,在平面直角坐標系中,AB、CD都垂直于x軸,垂足分別為B、D且AD與B相交于E點.已知:A(-2,-6),C(1,-3)
(1)求證:E點在y軸上;
(2)如果有一拋物線經(jīng)過A,E,C三點,求此拋物線方程.
(3)如果AB位置不變,再將DC水平向右移動k(k>0)個單位,此時AD與BC相交于E′點,如圖②,求△AE′C的面積S關(guān)于k的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線經(jīng)過A(-2,0),B(-3,3)及原點O,頂點為C.
(1)求拋物線的解析式;
(2)若點D在拋物線上,點E在拋物線的對稱軸上,且A、O、D、E為頂點的四邊形是平行四邊形,求點D的坐標;
(3)P是拋物線上的第一象限內(nèi)的動點,過點P作PM⊥x軸,垂足為M,是否存在點P,使得以P、M、A為頂點的三角形△BOC相似?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=
1
2
x2+mx+n過原點O,與x軸交于A,點D(4,2)在該拋物線上,過點D作CDx軸,交拋物線于點C,交y軸于點B,連接CO、AD.
(1)求C點的坐標及拋物線的解析式;
(2)將△BCO繞點O按順時針旋轉(zhuǎn)90°后再沿x軸對折得到△OEF(點C與點E對應),判斷點E是否落在拋物線上,并說明理由;
(3)設過點E的直線交OA于點P,交CD邊于點Q.問是否存在點P,使直線PQ分梯形AOCD的面積為1:3兩部分?若存在,求出P點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形OABC是矩形,OA=4,OC=8,將矩形OABC沿直線AC折疊,使點B落在D處,AD交OC于E.
(1)求OE的長;
(2)求過O,D,C三點拋物線的解析式;
(3)若F為過O,D,C三點拋物線的頂點,一動點P從點A出發(fā),沿射線AB以每秒1個單位長度的速度勻速運動,當運動時間t(秒)為何值時,直線PF把△FAC分成面積之比為1:3的兩部分.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=x2-2mx+n+1的頂點A在x軸負半軸上,與y軸交于點B,C是拋物線上一點,且點C的橫坐標為1,AC=3
10

(1)求拋物線的函數(shù)關(guān)系式;
(2)若D是拋物線上一點,直線BD經(jīng)過第一、二、四象限,且原點O到直線BD的距離為
8
5
5
,求點D的坐標;
(3)在(2)的條件下,直線BD上是否存在點P,使得以A、B、P為頂點的三角形與△AOB相似?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,已知拋物線經(jīng)過A(-4,0),B(0,-4),C(2,0)三點.
(1)求拋物線的解析式;
(2)若點M為第三象限內(nèi)拋物線上一動點,點M的橫坐標為m,△AMB的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)副產(chǎn)品,已知這種產(chǎn)品的成本價為20元/千克,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量W(千克)與銷售價x(元/千克)有如下關(guān)系:W=-2x+80,設這種產(chǎn)品每天的銷售利潤為y(元).
(1)求y與x之間的函數(shù)關(guān)系式.
(2)當銷售價定為多少元時,每天的銷售利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,P是拋物線y1=x2-6x+9對稱軸上的一個動點,在對稱軸左邊的直線x=t平行于y軸,分別與直線y2=x、拋物線y2交于點A、B.若△ABP是以點A或點B為直角頂點的等腰直角三角形,求滿足條件的t的值,則t=______.

查看答案和解析>>

同步練習冊答案