【題目】對于平面直角坐標(biāo)系xOy中的點P(a,b),若點P′的坐標(biāo)為(a+kb,ka+b)(其中k為常數(shù),且k≠0),則稱點P′為點P的“k屬派生點”.
如:P(1,4)的“2屬派生點為P′(1+2×4,2×1+4),即P′(9,6);
(1)點P(-1,3)的“2屬派生點”P′的坐標(biāo)為______;
(2)若點P的“3屬派生點”P′的坐標(biāo)為(-1,3),則點P的坐標(biāo)為______.
(3)若點P在x軸的正半軸上,點P的“k屬派生點”為點P′,線段PP′的長度等于線段OP的長度,求k的值.
【答案】(1)(5,1);(2)(,);(3)k=±1.
【解析】
(1)根據(jù)“k屬派生點”計算可得;
(2)設(shè)點P的坐標(biāo)為(x、y),根據(jù)“k屬派生點”定義及P′的坐標(biāo)列出關(guān)于x、y的方程組,解之可得;
(3)先得出點P′的坐標(biāo)為(a,ka),由線段PP′的長度為線段OP長度的2倍列出方程,解之可得.
(1)點P(-1,3)的“2屬派生點”P′的坐標(biāo)為(-1+3×2,-1×2+3),即(5,1),
故答案為:(5,1),
(2)設(shè)P(x,y),
依題意,得方程組:,
解得,
∴點P(,).
故答案是:(,).
(3)∵點P(a,b)在x軸的正半軸上,
∴b=0,a>0.
∴點P的坐標(biāo)為(a,0),點P′的坐標(biāo)為(a,ka),
∴線段PP′的長為點P′到x軸距離為|ka|,
∵P在x軸正半軸,線段OP的長為a,
根據(jù)題意,有|PP'|=|OP|,
∴|ka|=a,
∵a>0,
∴|k|=1.
從而k=±1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點D是AB邊中點,點E是BC邊上一點,將△ADE沿DE折疊,得到△FDE,使△FDE與△BDE重疊部分的面積是△AEB面積的,若AC=3,BC=6,則線段BE的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AB=AC,∠B=50°,P 是邊 AB 上的一個動點(不與頂點 A 重合),則∠BPC 的度數(shù)可能是
A. 50° B. 80° C. 100° D. 130°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點D在AC邊上,∠1=∠2,AE和BD相交于點O.
(1)求證:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知abc 0,而且 ,那么直線y=px+p一定通過( )
A.第一、二象限
B.第二、三象限
C.第三、四象限
D.第一、四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料
已知:如圖,四邊形ABCD是平行四邊形;
求作:菱形AECF,使點E,F分別在BC,AD上.
小凱的作法如下:
(1)連接AC;
(2)作AC的垂直平分線EF分別交BC,AD于E,F.
(3)連接AE,CF
所以四邊形AECF是菱形.
老師說:“小凱的作法正確”.
回答問題:
已知:在平行四邊形ABCD中,點E、F分別在邊BC、AD上______________________________________________.(補(bǔ)全已知條件)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了宣傳垃圾分類,小王寫了一封倡議書,用微博轉(zhuǎn)發(fā)的方式傳播,他設(shè)計了如下的轉(zhuǎn)發(fā)規(guī)則:將倡議書發(fā)表在自己的微博上,然后邀請個好友轉(zhuǎn)發(fā),每個好友轉(zhuǎn)發(fā)之后,又邀請個互不相同的好友轉(zhuǎn)發(fā),已知經(jīng)過兩輪轉(zhuǎn)發(fā)后,共有個 人參與了本次活動.
(1)x的值是多少?
(2)再經(jīng)過幾輪轉(zhuǎn)發(fā)后,參與人數(shù)會超過人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.
(1)求證:四邊形ACDF是平行四邊形;
(2)當(dāng)CF平分∠BCD時,寫出BC與CD的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個小正方形邊長為1的方格紙中,△ABC的頂點都在方格紙格點上
(1)畫出△ABC向右平移4格, 再向上平移1格后的△A1B1C1;
(2)圖中BC與B1C1的關(guān)系是 ;
(3)圖中△ABC的面積是
(4)請在AB上找一點D,使得線段CD平分△ABC的面積,在圖上作出線段CD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com