【題目】有甲、乙兩位同學(xué),根據(jù)關(guān)于x的一元二次方程kx2﹣(k+2)x+2=0”(k為實數(shù))這一已知條件,他們各自提出了一個問題考查對方,問題如下:

甲:你能不解方程判斷方程實數(shù)根的情況嗎?

乙:若方程有兩個不相等的正整數(shù)根,你知道整數(shù)k的值等于多少嗎?請你幫助兩人解決上述問題.

【答案】見解析.

【解析】試題分析:(1)首先根據(jù)一元二次方程的定義得出k≠0,再計算△=(k+2)2-4k×2=(k-2)2≥0,由判別式的意義即可判定方程有實數(shù)根;

(2)利用因式分解法求出方程的兩根為x1=1,x2=,根據(jù)方程有兩個不相等的正整數(shù)根,得出整數(shù)k=1.

試題解析:(1)kx2﹣(k+2)x+2=0(k為實數(shù))是關(guān)于x的一元二次方程,

k≠0,

∵△=(k+2)2﹣4k×2=(k﹣2)2≥0,

∴方程有實數(shù)根;

(2)kx2﹣(k+2)x+2=0,

(x﹣1)(kx﹣2)=0,

x﹣1=0,或kx﹣2=0,

解得x1=1,x2=,

∵方程有兩個不相等的正整數(shù)根,且k為整數(shù),

k=12,

k=2時,x1=x2=1,兩根相等,不合題意舍去,

k=1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每年農(nóng)歷五月初五,是中國民間的傳統(tǒng)節(jié)日——端午節(jié).它始于我國的春秋戰(zhàn)國時期,已列為世界非物質(zhì)文化遺產(chǎn).時至今日,端午節(jié)在我國仍是一個十分盛行的節(jié)日.今年端午節(jié),某地甲、乙兩家超市為吸引更多的顧客,開展促銷活動,對某種質(zhì)量和售價相同的粽子分別推出了不同的優(yōu)惠方案.甲超市的方案是:購買該種粽子超過80元后,超出80元的部分按九折收費;乙超市的方案是:購買該種粽子超過120元后,超出120元的部分按八折收費.請根據(jù)顧客購買粽子的金額,選擇到哪家超市購買粽子劃算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為25,內(nèi)部有6個全等的正方形,小正方形的頂點E、F、G、H分別落在邊AD、AB、BC、CD上,則每個小正方形的邊長為( )

A.6 B.5 C.2 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】春季是流感高發(fā)的季節(jié),為此,某校為預(yù)防流感,對教室進(jìn)行熏藥消毒.在對教室進(jìn)行消毒的過程中,先經(jīng)過10min的藥物燃燒,再封閉教室15min,然后打開門窗進(jìn)行通風(fēng).已知室內(nèi)空氣中含藥量與藥物在空氣中的持續(xù)時間之間的函數(shù)關(guān)系式如圖所示(即圖中線段OA、線段AB和雙曲線在點B及其右側(cè)部分),請根據(jù)圖中信息解答下列問題:

1)求藥物燃燒階段和打開門窗進(jìn)行通風(fēng)階段之間的函數(shù)表達(dá)式;

2)若室內(nèi)空氣中的含藥量不低于且持續(xù)時間不少于35min,才能有效消滅病毒,則此次消毒是否有效?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(8分)用方程解答下列問題

(1)一個角的余角比它的補角的還少15°,求這個角的度數(shù).

(2)幾個人共同搬運一批貨物,如果每人搬運8箱貨物,則剩下7箱貨物未搬運;如果每人搬運12箱貨物,則缺13箱貨物,求參與搬運貨物的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究逼近的有理近似值.

方法介紹:

經(jīng)過步操作(為正整數(shù))不斷尋找有理數(shù),使得,并且讓的值越來越小,同時利用數(shù)軸工具將任務(wù)幾何化,直觀理解通過等分線段的方法不斷縮小對應(yīng)的點所在線段的長度(二分法)

思路

在數(shù)軸上記對應(yīng)的點分別為,的平均數(shù)對應(yīng)線段的中點(記為.通過判斷還是,得到點是在二等分后的左線段上還是右線段上,重復(fù)上述步驟,不斷得到,從而得到更精確的近似值.

具體操作步驟及填寫閱讀活動任務(wù)單

1)當(dāng)時,

①尋找左右界值:先尋找兩個連續(xù)正整數(shù),使得.

因為,所以,那么,,線段的中點對應(yīng)的數(shù).

②二分定位:判斷點左線段上還是在右線段.

比較7的大小,從而確定的大。

因為 > (填 “>”“<”),得到點在線段 上(填.

2)當(dāng)時,在(1)中所得的基礎(chǔ)上,仿照以上步驟,繼續(xù)進(jìn)行下去,得到表中時的相應(yīng)內(nèi)容.

請繼續(xù)仿照以上步驟操作下去,補全閱讀活動任務(wù)單

的值

還是

左線段上還是右線段

得出更精確的,,的大小關(guān)系

1

2

3

2.5

在線段

2

2.5

3

2.75

在線段

3

2.5

2.75

2.625

4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:有兩條邊長的比值為的直角三角形叫潛力三角形.如圖,在ABC中,∠B=90°,DAB的中點,ECD的中點,DFAEBC于點F.

(1)設(shè)潛力三角形較短直角邊長為a,斜邊長為c,請你直接寫出的值為   ;

(2)若∠AED=DCB,求證:BDF潛力三角形”;

(3)若BDF潛力三角形,且BF=1,求線段AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點E是邊AC上一點,線段BE垂直于∠BAC的平分線于點D,點M為邊BC的中點,連接DM

(1)求證: DMCE;

(2)AD6,BD8,DM2,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在半徑為2的扇形AOB中,∠AOB=90°,點C是弧AB上的一個動點(不與點A,B重合),OD⊥BC,OE⊥AC,垂足分別為D,E.

(1)當(dāng)BC=1時,求線段OD的長;

(2)在△DOE中是否存在長度保持不變的邊?如果存在,請指出并求其長度,如果不存在,請說明理由;

(3)設(shè)BD=x,△DOE的面積為y,求y關(guān)于x的函數(shù)表達(dá)式,并寫出自變量的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案