【題目】已知,為等邊三角形,上一動(dòng)點(diǎn),以為邊,如圖所示作等邊三角形交于點(diǎn),連接.

(1)求證:

(2)若長(zhǎng)為,長(zhǎng)為,試求出的函數(shù)關(guān)系.

【答案】(1)證明見(jiàn)解析(2)

【解析】

(1)根據(jù)等邊三角形的性質(zhì)得到AB=AC,AD=AE,BAC=DAE,根據(jù)全等三角形的判定和性質(zhì)即可得到結(jié)論;

(2)根據(jù)全等三角形的性質(zhì)得到∠BAD=CAE,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.

(1)證明:∵△ABC與△ADE是等邊三角形,

AB=AC,AD=AE,BAC=DAE,

∴∠BAD=CAE,

在△ABD與△ACE中,

∴△ABD≌△ACE,

BD=CE;

(2)∵△ABD≌△ACE,

∴∠BAD=CAE,

∵∠AED=ACB=60°,AFE=CFD,

∴∠CDF=CAE,

∴∠CDF=DAB,

∵∠B=DCF=60°,

∴△ABD∽△CDF,

,即,
y=-x2+x.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=ax2+bx+3(a≠0)過(guò)A(4,4),B(2,m)兩點(diǎn),點(diǎn)B到拋物線對(duì)稱(chēng)軸的距離記為d,滿足0<d≤1,則實(shí)數(shù)m的取值范圍是( 。

A. m≤2或m≥3 B. m≤3或m≥4 C. 2<m<3 D. 3<m<4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,先把一矩形ABCD紙片上下對(duì)折,設(shè)折痕為MN;如圖②,再把點(diǎn)B疊在折痕線MN上,得到RtABE.過(guò)B點(diǎn)作PQMN,分別交EC、AD于點(diǎn)P、Q.

(1)求證:PBE∽△QAB;

(2)在圖②中,如果沿直線EB再次折疊紙片,點(diǎn)A能否疊在直線EC上?請(qǐng)說(shuō)明理由;

(3)在(2)的條件下,若AB=3,求AE的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+2x+a﹣2=0.

(1)若該方程有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍;

(2)設(shè)方程兩根為x1,x2是否存在實(shí)數(shù)a,使?若存在求出實(shí)數(shù)a,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,在邊上截取,連接,若點(diǎn)D恰好是線段的一個(gè)黃金分割點(diǎn),則的度數(shù)是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩車(chē)分別從A、B兩地同時(shí)出發(fā),甲車(chē)勻速前往B地,到達(dá)B地立即以另一速度按原路勻速返回到A地;乙車(chē)勻速前往A地,設(shè)甲、乙兩車(chē)距A地的路程為y(千米),甲車(chē)行駛的時(shí)間為x(時(shí)),yx之間的函數(shù)圖象如圖所示

1)求甲車(chē)從A地到達(dá)B地的行駛時(shí)間;

2)求甲車(chē)返回時(shí)yx之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;

3)求乙車(chē)到達(dá)A地時(shí)甲車(chē)距A地的路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,,于點(diǎn)DAC于點(diǎn)E,過(guò)點(diǎn)C外部作,于點(diǎn)連接EF

求證:;

判斷四邊形DCFE的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,CDAB,垂足為D,AC=20,BC=15.動(dòng)點(diǎn)PA開(kāi)始,以每秒2個(gè)單位長(zhǎng)的速度沿AB方向向終點(diǎn)B運(yùn)動(dòng),過(guò)點(diǎn)P分別作AC、BC邊的垂線,垂足為E、F.

(1)ABCD的長(zhǎng);

(2)當(dāng)矩形PECF的面積最大時(shí),求點(diǎn)P運(yùn)動(dòng)的時(shí)間t;

(3)以點(diǎn)C為圓心,r為半徑畫(huà)圓,若圓C與斜邊AB有且只有一個(gè)公共點(diǎn)時(shí),求r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,已知∠ABC=120°,AC=4,

(1)用直尺和圓規(guī)作出△ABC的外接圓⊙O(不寫(xiě)作法,保留作圖痕跡);

(2)求∠AOC的度數(shù);

(3)求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案