【題目】拋物線y=ax2+bx+3(a≠0)過A(4,4),B(2,m)兩點,點B到拋物線對稱軸的距離記為d,滿足0<d≤1,則實數(shù)m的取值范圍是( 。
A. m≤2或m≥3 B. m≤3或m≥4 C. 2<m<3 D. 3<m<4
【答案】B
【解析】
把A(4,4)代入拋物線y=ax2+bx+3得4a+b=,根據(jù)對稱軸x=-,B(2,m),且點B到拋物線對稱軸的距離記為d,滿足0<d≤1,所以0<|2-(-)|≤1,解得a≥或a≤-,把B(2,m)代入y=ax2+bx+3得:4a+2b+3=m,得到a=-,所以-≥或-≤-,即可解答.
把A(4,4)代入拋物線y=ax2+bx+3得:
16a+4b+3=4,
∴16a+4b=1,
∴4a+b=,
∵對稱軸x=,B(2,m),且點B到拋物線對稱軸的距離記為d,滿足0<d≤1,
∴0<|2()|≤1
∴0<||≤1,
∴||≤1,
∴a≥或a≤,
把B(2,m)代入y=ax2+bx+3得:4a+2b+3=m,
2(2a+b)+3=m,
2(2a+4a)+3=m,
4a=m,
a=-,
∴-≥或-≤-,
∴m≤3或m≥4.
故答案選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某地有一座圓弧形的拱橋,橋下水面寬AB為12米,拱高CD為4米.
(1)求這座拱橋所在圓的半徑.
(2)現(xiàn)有一艘寬5米,船艙頂部為正方形并高出水面3.6米的貨船要經(jīng)過這里,此時貨船能順利通過這座拱橋嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為的直徑,、是的切線,切點分別為、,過點作,交于點,交于點.
求證:是的切線;
若,,求陰影部分的面積.(結(jié)果保留)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, BD 是△ABC 的角平分線, AE⊥ BD ,垂足為 F ,若∠ABC=35°,∠ C=50°,則∠CDE 的度數(shù)為( )
A.35°B.40°C.45°D.50°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△AOB中,∠O=90°,AO=18cm,BO=30cm,動點M從點A開始沿邊AO以1cm/s的速度向終點O移動,動點N從點O開始沿邊OB以2cm/s的速度向終點B移動,一個點到達(dá)終點時,另一個點也停止運動.如果M、N兩點分別從A、O兩點同時出發(fā),設(shè)運動時間為ts時四邊形ABNM的面積為Scm2.
(1)求S關(guān)于t的函數(shù)關(guān)系式,并直接寫出t的取值范圍;
(2)判斷S有最大值還是有最小值,用配方法求出這個值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,點A、D、B、E在同一直線上,AC=EF,AD=BE,∠A=∠E,
(1)求證:△ABC≌△EDF;
(2)當(dāng)∠CHD=120°,猜想△HDB的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】作圖與探究:
如圖,△ABC中,AB=AC.
(1)作圖:①畫線段BC的垂直平分線l,設(shè)l與BC邊交于點H;
②在射線HA上畫點D,使AD=AB,連接BD. (不寫作法,保留作圖痕跡)
(2)探究:∠D與∠C有怎樣的數(shù)量關(guān)系? 并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,∠A=30°,DE垂直平分斜邊AC,交AB于D,E是垂足,連接BE,CD,若BD=1,則△BCE的面積為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(0,4)是直角坐標(biāo)系y軸上一點,動點P從原點O出發(fā),沿x軸正半軸運動,速度為每秒1個單位長度,以P為直角頂點在第一象限內(nèi)作等腰Rt△APB.設(shè)P點的運動時間為t秒.
(1)若AB∥x軸,如圖1,求t的值;
(2)設(shè)點A關(guān)于x軸的對稱點為A′,連接A′B,在點P運動的過程中,∠OA′B的度數(shù)是否會發(fā)生變化,若不變,請求出∠OA′B的度數(shù),若改變,請說明理由.
(3)如圖2,當(dāng)t=3時,坐標(biāo)平面內(nèi)有一點M(不與A重合)使得以M、P、B為頂點的三角形和△ABP全等,請直接寫出點M的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com