【題目】已知,,直線經(jīng)過點,作,垂足為,連接.

(感知)如圖①,點、同側(cè),且點右側(cè),在射線上截取,連接,可證,從而得出, ,進而得出 度.

(探究)如圖②,當點、異側(cè)時,(感知)得出的的大小是否改變?若不改變,給出證明;若改變,請求出的大小.

(應用)在直線繞點旋轉(zhuǎn)的過程中,當 ,時,直接寫出的長.

【答案】45;不改變,證明見解析;.

【解析】

[感知]證明BCD≌△ECASAS即可解決問題

[探究]結(jié)論不變,證明BCD≌△ECASAS即可解決問題.

[應用]分兩種情形分別求解即可解決問題.

[感知],如圖1中,在射線AM上截取AE=BD,連結(jié)CE

ACDC,DBMN,

∴∠ACD=DBA=90°

∴∠CDB+CAB=180°,

∵∠CAB+CAE=180°

∴∠D=CAE,∵CD=AC,AE=BD,

∴△BCD≌△ECASAS),

BC=EC,∠BCD=ECA,

∵∠ACE+ECD=90°,

∴∠ECD+DCB=90°,

即∠ECB=90°

∴∠ABC=45°

故答案為45

[探究]不改變.理由如下:

如圖,如圖2中,在射線AN上截取AE=BD,連接CE,設MNCD交于點O

ACDC,DBMN,

∴∠ACD=DBA=90°

∵∠AOC=DOB,

∴∠D=EACCD=AC,

∴△BCD≌△ECASAS),

BC=EC,∠BCD=ECA

∵∠ACE+ECD=90°,

∴∠ECD+DCB=90°

即∠ECB=90°,

∴∠ABC=45°

[拓展]如圖①-1中,連接AD

∴∠ACD+ABD=180°,

A,C,D,B四點共圓,

∴∠DAB=DCB=30°,

AB=BD=,

EB=AE+AB=+

∵△ECB是等腰直角三角形,

BC=

如圖②中,同法可得BC=-1

綜上所述,BC的長為+1-1

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在RtABC中,∠ACB90°,AC3,BC4,動點P在線段BC上,點Q在線段AB上,且PQBQ,延長QP交射線AC于點D

1)求證:QAQD;

2)設∠BAPα,當2tanα是正整數(shù)時,求PC的長;

3)作點Q關于AC的對稱點Q′,連結(jié)QQ′,AQ′,DQ′,延長BC交線段DQ′于點E,連結(jié)AE,QQ′分別與APAE交于點M,N(如圖2所示).若存在常數(shù)k,滿足kMNPEQQ′,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解居民的環(huán)保意識,社區(qū)工作人員在光明小區(qū)隨機抽取了若干名居民開展主題為打贏藍天保衛(wèi)戰(zhàn)的環(huán)保知識有獎問答活動,并用得到的數(shù)據(jù)繪制了如圖條形統(tǒng)計圖(得分為整數(shù),滿分為10分,最低分為6分)

請根據(jù)圖中信息,解答下列問題:

(1)本次調(diào)查一共抽取了   名居民;

(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

(3)社區(qū)決定對該小區(qū)500名居民開展這項有獎問答活動,得10分者設為一等獎,請你根據(jù)調(diào)查結(jié)果,幫社區(qū)工作人員估計需準備多少份一等獎獎品?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長是3,BP=CQ,連接AQ,DP交于點O,并分別與邊CD,BC交于點F,E,連接AE,下列結(jié)論:①AQ⊥DP;②OA2=OEOP;③S△AOD=S四邊形OECF;④當BP=1時,tan∠OAE=,其中正確結(jié)論的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y=﹣x+3x軸、y軸分別交于A,B兩點,拋物線y=﹣x2+bx+c經(jīng)過A,B兩點,點P在線段OA上,從點A1個單位/秒的速度勻速運動;同時,點Q在線段AB上,從點A出發(fā),向點B個單位/秒的速度勻速運動,連接PQ,設運動時間為t秒.

(1)求拋物線的解析式;

(2)當t為何值時,△APQ為直角三角形;

(3)過點PPEy軸,交AB于點E,過點QQFy軸,交拋物線于點F,連接EF,當EFPQ時,求點F的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的港珠澳大橋是目前橋梁設計中廣泛采用的斜拉橋,它用粗大的鋼索將橋面拉住,為檢測鋼索的抗拉強度,橋梁建設方從甲、乙兩家生產(chǎn)鋼索的廠方各隨機選取5根鋼索進行抗拉強度的檢測,數(shù)據(jù)統(tǒng)計如下(單位:百噸)

甲、乙兩廠鋼索抗拉強度檢測統(tǒng)計表

鋼索

1

2

3

4

5

平均數(shù)

中位數(shù)

方差

甲廠

10

11

9

10

12

10.4

10

1.04

乙廠

10

8

12

7

13

a

b

c

1)求乙廠5根鋼索抗拉強度的平均數(shù)a(百噸)、中位數(shù)b(百噸)和方差c(平方百噸).

2)橋梁建設方?jīng)Q定從抗拉強度的總體水平和穩(wěn)定性來決定鋼索的質(zhì)量,問哪一家的鋼索質(zhì)量更優(yōu)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的平分線相交于點P,,PBCE交于點H,BCF,交ABG,下列結(jié)論:①;②;③ BP垂直平分CE;④,其中正確的判斷有(

A. ①②B. ③④C. ①③④D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點E,F分別在邊ABAD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH

(1)填空:∠AHC   ACG;(填“>”或“<”或“=”)

(2)線段AC,AG,AH什么關系?請說明理由;

(3)設AEm,

①△AGH的面積S有變化嗎?如果變化.請求出Sm的函數(shù)關系式;如果不變化,請求出定值.

②請直接寫出使△CGH是等腰三角形的m值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解學生的安全意識情況,在全校范圍內(nèi)隨機抽取部分學生進行問卷調(diào)查,根據(jù)調(diào)查結(jié)果,把學生的安全意識分成淡薄”、“一般”、“較強”、“很強四個層次,并繪制成如下兩幅尚不完整的統(tǒng)計圖.

根據(jù)以上信息,解答下列問題:

(1)這次調(diào)查一共抽取了 名學生,其中安全意識為很強的學生占被調(diào)查學生總數(shù)的百分比是

(2)請將條形統(tǒng)計圖補充完整;

(3)該校有1800名學生,現(xiàn)要對安全意識為淡薄”、“一般的學生強化安全教育,根據(jù)調(diào)查結(jié)果,估計全校需要強化安全教育的學生約有 名.

查看答案和解析>>

同步練習冊答案