【題目】姐妹兩人在50米的跑道上進(jìn)行短路比賽,兩人從出發(fā)點(diǎn)同時(shí)起跑,姐姐到達(dá)終點(diǎn)時(shí),妹妹離終點(diǎn)還差3米,已知姐妹兩人的平均速度分別為a米/秒、b米/秒.
(1)如果兩人重新開始比賽,姐姐從起點(diǎn)向后退3米,姐妹同時(shí)起跑,兩人能否同時(shí)到達(dá)終點(diǎn)?若能,請(qǐng)求出兩人到達(dá)終點(diǎn)的時(shí)間;若不能,請(qǐng)說明誰先到達(dá)終點(diǎn).
(2)如果兩人想同時(shí)到達(dá)終點(diǎn),應(yīng)如何安排兩人的起跑位置?請(qǐng)你設(shè)計(jì)兩種方案.
【答案】(1)姐姐用時(shí)秒,妹妹用時(shí)秒,所以不能同時(shí)到,姐姐先到;(2)姐姐后退米或妹妹前進(jìn)3米
【解析】
(1)先求出姐姐和妹妹的速度關(guān)系,然后求出再次比賽時(shí)兩人用的時(shí)間,從而得出結(jié)論;
(2)2種方案,姐姐退后或者妹妹向前,要想同時(shí)到達(dá)終點(diǎn),則比賽用時(shí)相等,根據(jù)這個(gè)關(guān)系列寫等量關(guān)系式并求解.
(1)∵姐姐到達(dá)終點(diǎn)是,妹妹距終點(diǎn)還有3米
∴姐姐跑50米和妹妹跑47米的時(shí)間相同,設(shè)這個(gè)時(shí)間為:
即:
∴a=50k,b=47k
則再次比賽,姐姐的時(shí)間為:=秒
妹妹的時(shí)間為:秒
∵,
∴<,即姐姐用時(shí)短,姐姐先到達(dá)終點(diǎn)
(2)情況一:姐姐退后x米,兩人同時(shí)到達(dá)終點(diǎn)
則:=,解得:x=
情況二:妹妹向前y米,兩人同時(shí)到達(dá)終點(diǎn)
則:=,解得:y=3
綜上得:姐姐退后米或妹妹前進(jìn)3米,兩人同時(shí)到達(dá)終點(diǎn)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,初三數(shù)學(xué)興趣小組同學(xué)為了測(cè)量垂直于水平地面的一座大廈AB的高度,一測(cè)量人員在大廈附近C處,測(cè)得建筑物頂端A處的仰角大小為45°,隨后沿直線BC向前走了60米后到達(dá)D處,在D處測(cè)得A處的仰角大小為30°,則大廈AB的高度約為多少米?(注:不計(jì)測(cè)量人員的身高,結(jié)果按四舍五入保留整數(shù),參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形的頂點(diǎn)在軸上,反比例函數(shù)()的圖像經(jīng)過頂點(diǎn),和邊的中點(diǎn).若,則的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)(2,0)和(3,0)之間,對(duì)稱軸是x=1.對(duì)于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實(shí)數(shù));⑤當(dāng)﹣1<x<3時(shí),y>0,其中正確的是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料,我們給出如下定義:若一個(gè)四邊形中存在一組對(duì)邊的平方和等于另一組對(duì)邊的平方和,則稱這個(gè)四邊形為等平方和四邊形.
(1)寫出一個(gè)你所學(xué)過的特殊四邊形中是等平方和四邊形的圖形的名稱: .
(2)如圖,在梯形ABCD中,AD∥BC,AC⊥BD,垂足為O.
求證:,即四邊形ABCD是等平方和四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一副“弦圖”,后人稱其為“趙爽弦圖”(如圖1).圖2由弦圖變化得到,它由四個(gè)全等的直角三角形拼接而成.點(diǎn)E,F,G,H分別是AF,BG,CH,DE的中點(diǎn),點(diǎn)M,N,P,Q分別是HE,EF,FG,GH上的中點(diǎn),且四邊形MNPQ是正方形,已知正方形ABCD的面積為20,則正方形MNPQ的面積是( ).
A.2B.1C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,,反比例函數(shù)在第一象限內(nèi)的圖象分別與線段交于點(diǎn),連接,如果點(diǎn)關(guān)于的對(duì)稱點(diǎn)恰好落在邊上,那么的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形中,,,過點(diǎn)作,垂足為,,垂足為.
(1)連接,用等式表示線段與的數(shù)量關(guān)系,并說明理由;
(2)連接,過點(diǎn)作,垂足為,求的長(zhǎng)(用含的代數(shù)式表示);
(3)延長(zhǎng)線段到,延長(zhǎng)線段到,且,連接,,.
①判斷的形狀,并說明理由;
②若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,經(jīng)過,兩點(diǎn),交延長(zhǎng)線于點(diǎn),過點(diǎn)作的切線交于點(diǎn),且.
(1)求證:;
(2)設(shè)交于點(diǎn),若,,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com