【題目】如圖,已知正方形ABCD的邊長是8,點E是AB邊上一動點,連接CE,過點B作BG⊥CE于點G,點P是AB邊上另一動點,則PD+PG的最小值是( )
A.B.C.D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過反比例函數(shù)y=(k<0)的圖象上一點A作AB⊥x軸于點B,連結(jié)AO,過點B作BC∥AO交y軸于點C,若點A的縱坐標(biāo)為4,且tan∠BCO=,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,對角線AC、BD交于點O,若AB=BC,過點A作BC的垂線交BC于點E,交BD于點M,∠ABC>60°.
(1)若ME=3,BE=4,求EC的長度.
(2)如圖,延長CE至點G;使得EC=GE;過點G作GF垂直于AB的延長線于點H,交AE的延長線于點F,
求證:AE=GF+EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】公司為了運輸?shù)姆奖,將生產(chǎn)的產(chǎn)品打包成件,運往同一目的地.其中A產(chǎn)品和B產(chǎn)品共320件,A產(chǎn)品比B產(chǎn)品多80件.
(1)求打包成件的A產(chǎn)品和B產(chǎn)品各多少件?
(2)現(xiàn)計劃租用甲、乙兩種貨車共8輛,一次性將這批產(chǎn)品全部運往同一目的地.已知甲種貨車最多可裝A產(chǎn)品40件和B產(chǎn)品10件,乙種貨車最多可裝A產(chǎn)品和B產(chǎn)品各20件.如果甲種貨車每輛需付運輸費4000元,乙種貨車每輛需付運輸費3600元.則公司安排甲、乙兩種貨車時有幾種方案?并說明公司選擇哪種方案可使運輸費最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果三角形的兩個內(nèi)角α與β滿足2α+β=90°,那么我們稱這樣的三角形為“準(zhǔn)互余三角形”.
(1)若△ABC是“準(zhǔn)互余三角形”,∠C>90°,∠A=60°,則∠B= °;
(2)如圖①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分線,不難證明△ABD是“準(zhǔn)互余三角形”.試問在邊BC上是否存在點E(異于點D),使得△ABE也是“準(zhǔn)互余三角形”?若存在,請求出BE的長;若不存在,請說明理由.
(3)如圖②,在四邊形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“準(zhǔn)互余三角形”,求對角線AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,△ABC的位置如圖所示.
(1)分別寫出△ABC各個頂點的坐標(biāo);
(2)分別寫出頂點A關(guān)于x軸對稱的點A′的坐標(biāo)、頂點B關(guān)于y軸對稱的點B′的坐標(biāo)及頂點C關(guān)于原點對稱的點C′的坐標(biāo);
(3)求線段BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是某小區(qū)入口抽象成的平面示意圖,已知入口BC寬4米,欄桿支點O與地面BC的距離為0.8米,當(dāng)欄桿OM升起到與門衛(wèi)室外墻AB的夾角成30°時,一輛寬2.4米,高1.6米的轎車能否從該入口的正中間位置進(jìn)入該小區(qū)?若能,請通過計算說明;若不能,請說明理由.(參考數(shù)據(jù):1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為加快城鄉(xiāng)對接,建設(shè)全域美麗鄉(xiāng)村,某地區(qū)對A、B兩地間的公路進(jìn)行改建.如圖,A、B兩地之間有一座山,汽車原來從A地到B地需途徑C地沿折線ACB行駛,現(xiàn)開通隧道后,汽車可直接沿直線AB行駛.已知BC=80千米,∠A=45°,∠B=30°.
(1)開通隧道前,汽車從A地到B地大約要走多少千米?
(2)開通隧道后,汽車從A地到B地大約可以少走多少千米?(結(jié)果精確到0.1千米)(參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com